![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > atandmtan | Structured version Visualization version GIF version |
Description: The tangent function has range contained in the domain of the arctangent. (Contributed by Mario Carneiro, 31-Mar-2015.) |
Ref | Expression |
---|---|
atandmtan | ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ dom arctan) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tancl 14979 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ ℂ) | |
2 | tanval 14978 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) | |
3 | 2 | oveq1d 6780 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) = (((sin‘𝐴) / (cos‘𝐴))↑2)) |
4 | sincl 14976 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈ ℂ) | |
5 | 4 | adantr 472 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (sin‘𝐴) ∈ ℂ) |
6 | coscl 14977 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈ ℂ) | |
7 | 6 | adantr 472 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘𝐴) ∈ ℂ) |
8 | simpr 479 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (cos‘𝐴) ≠ 0) | |
9 | 5, 7, 8 | sqdivd 13136 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴) / (cos‘𝐴))↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))) |
10 | 3, 9 | eqtrd 2758 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) = (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2))) |
11 | 5 | sqcld 13121 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sin‘𝐴)↑2) ∈ ℂ) |
12 | 7 | sqcld 13121 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((cos‘𝐴)↑2) ∈ ℂ) |
13 | 12 | negcld 10492 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → -((cos‘𝐴)↑2) ∈ ℂ) |
14 | 11, 12 | subnegd 10512 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) − -((cos‘𝐴)↑2)) = (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2))) |
15 | sincossq 15026 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) | |
16 | 15 | adantr 472 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) = 1) |
17 | 14, 16 | eqtrd 2758 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) − -((cos‘𝐴)↑2)) = 1) |
18 | ax-1ne0 10118 | . . . . . . . 8 ⊢ 1 ≠ 0 | |
19 | 18 | a1i 11 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → 1 ≠ 0) |
20 | 17, 19 | eqnetrd 2963 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) − -((cos‘𝐴)↑2)) ≠ 0) |
21 | 11, 13, 20 | subne0ad 10516 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sin‘𝐴)↑2) ≠ -((cos‘𝐴)↑2)) |
22 | 12 | mulm1d 10595 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (-1 · ((cos‘𝐴)↑2)) = -((cos‘𝐴)↑2)) |
23 | 21, 22 | neeqtrrd 2970 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((sin‘𝐴)↑2) ≠ (-1 · ((cos‘𝐴)↑2))) |
24 | neg1cn 11237 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
25 | 24 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → -1 ∈ ℂ) |
26 | sqne0 13045 | . . . . . . . 8 ⊢ ((cos‘𝐴) ∈ ℂ → (((cos‘𝐴)↑2) ≠ 0 ↔ (cos‘𝐴) ≠ 0)) | |
27 | 6, 26 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (((cos‘𝐴)↑2) ≠ 0 ↔ (cos‘𝐴) ≠ 0)) |
28 | 27 | biimpar 503 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((cos‘𝐴)↑2) ≠ 0) |
29 | 11, 25, 12, 28 | divmul3d 10948 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)) = -1 ↔ ((sin‘𝐴)↑2) = (-1 · ((cos‘𝐴)↑2)))) |
30 | 29 | necon3bid 2940 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)) ≠ -1 ↔ ((sin‘𝐴)↑2) ≠ (-1 · ((cos‘𝐴)↑2)))) |
31 | 23, 30 | mpbird 247 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (((sin‘𝐴)↑2) / ((cos‘𝐴)↑2)) ≠ -1) |
32 | 10, 31 | eqnetrd 2963 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → ((tan‘𝐴)↑2) ≠ -1) |
33 | atandm3 24725 | . 2 ⊢ ((tan‘𝐴) ∈ dom arctan ↔ ((tan‘𝐴) ∈ ℂ ∧ ((tan‘𝐴)↑2) ≠ -1)) | |
34 | 1, 32, 33 | sylanbrc 701 | 1 ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) ≠ 0) → (tan‘𝐴) ∈ dom arctan) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ≠ wne 2896 dom cdm 5218 ‘cfv 6001 (class class class)co 6765 ℂcc 10047 0cc0 10049 1c1 10050 + caddc 10052 · cmul 10054 − cmin 10379 -cneg 10380 / cdiv 10797 2c2 11183 ↑cexp 12975 sincsin 14914 cosccos 14915 tanctan 14916 arctancatan 24711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-inf2 8651 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 ax-pre-sup 10127 ax-addf 10128 ax-mulf 10129 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-fal 1602 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-int 4584 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-se 5178 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-isom 6010 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-1st 7285 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-oadd 7684 df-er 7862 df-pm 7977 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-sup 8464 df-inf 8465 df-oi 8531 df-card 8878 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-div 10798 df-nn 11134 df-2 11192 df-3 11193 df-n0 11406 df-z 11491 df-uz 11801 df-rp 11947 df-ico 12295 df-fz 12441 df-fzo 12581 df-fl 12708 df-seq 12917 df-exp 12976 df-fac 13176 df-bc 13205 df-hash 13233 df-shft 13927 df-cj 13959 df-re 13960 df-im 13961 df-sqrt 14095 df-abs 14096 df-limsup 14322 df-clim 14339 df-rlim 14340 df-sum 14537 df-ef 14918 df-sin 14920 df-cos 14921 df-tan 14922 df-atan 24714 |
This theorem is referenced by: atantan 24770 |
Copyright terms: Public domain | W3C validator |