MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atandm3 Structured version   Visualization version   GIF version

Theorem atandm3 24725
Description: A compact form of atandm 24723. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atandm3 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1))

Proof of Theorem atandm3
StepHypRef Expression
1 3anass 1081 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
2 atandm 24723 . 2 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
3 ax-icn 10108 . . . . . . 7 i ∈ ℂ
4 sqeqor 13093 . . . . . . 7 ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → ((𝐴↑2) = (i↑2) ↔ (𝐴 = i ∨ 𝐴 = -i)))
53, 4mpan2 709 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴↑2) = (i↑2) ↔ (𝐴 = i ∨ 𝐴 = -i)))
6 i2 13080 . . . . . . 7 (i↑2) = -1
76eqeq2i 2736 . . . . . 6 ((𝐴↑2) = (i↑2) ↔ (𝐴↑2) = -1)
8 orcom 401 . . . . . 6 ((𝐴 = i ∨ 𝐴 = -i) ↔ (𝐴 = -i ∨ 𝐴 = i))
95, 7, 83bitr3g 302 . . . . 5 (𝐴 ∈ ℂ → ((𝐴↑2) = -1 ↔ (𝐴 = -i ∨ 𝐴 = i)))
109necon3abid 2932 . . . 4 (𝐴 ∈ ℂ → ((𝐴↑2) ≠ -1 ↔ ¬ (𝐴 = -i ∨ 𝐴 = i)))
11 neanior 2988 . . . 4 ((𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ ¬ (𝐴 = -i ∨ 𝐴 = i))
1210, 11syl6bbr 278 . . 3 (𝐴 ∈ ℂ → ((𝐴↑2) ≠ -1 ↔ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
1312pm5.32i 672 . 2 ((𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
141, 2, 133bitr4i 292 1 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wo 382  wa 383  w3a 1072   = wceq 1596  wcel 2103  wne 2896  dom cdm 5218  (class class class)co 6765  cc 10047  1c1 10050  ici 10051  -cneg 10380  2c2 11183  cexp 12975  arctancatan 24711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-om 7183  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-er 7862  df-en 8073  df-dom 8074  df-sdom 8075  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-2 11192  df-n0 11406  df-z 11491  df-uz 11801  df-seq 12917  df-exp 12976  df-atan 24714
This theorem is referenced by:  atandm4  24726  atanre  24732  atandmneg  24753  atandmcj  24756  atandmtan  24767  bndatandm  24776
  Copyright terms: Public domain W3C validator