![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > atandm3 | Structured version Visualization version GIF version |
Description: A compact form of atandm 24723. (Contributed by Mario Carneiro, 31-Mar-2015.) |
Ref | Expression |
---|---|
atandm3 | ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anass 1081 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) | |
2 | atandm 24723 | . 2 ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) | |
3 | ax-icn 10108 | . . . . . . 7 ⊢ i ∈ ℂ | |
4 | sqeqor 13093 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ i ∈ ℂ) → ((𝐴↑2) = (i↑2) ↔ (𝐴 = i ∨ 𝐴 = -i))) | |
5 | 3, 4 | mpan2 709 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = (i↑2) ↔ (𝐴 = i ∨ 𝐴 = -i))) |
6 | i2 13080 | . . . . . . 7 ⊢ (i↑2) = -1 | |
7 | 6 | eqeq2i 2736 | . . . . . 6 ⊢ ((𝐴↑2) = (i↑2) ↔ (𝐴↑2) = -1) |
8 | orcom 401 | . . . . . 6 ⊢ ((𝐴 = i ∨ 𝐴 = -i) ↔ (𝐴 = -i ∨ 𝐴 = i)) | |
9 | 5, 7, 8 | 3bitr3g 302 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = -1 ↔ (𝐴 = -i ∨ 𝐴 = i))) |
10 | 9 | necon3abid 2932 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) ≠ -1 ↔ ¬ (𝐴 = -i ∨ 𝐴 = i))) |
11 | neanior 2988 | . . . 4 ⊢ ((𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ ¬ (𝐴 = -i ∨ 𝐴 = i)) | |
12 | 10, 11 | syl6bbr 278 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) ≠ -1 ↔ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) |
13 | 12 | pm5.32i 672 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) |
14 | 1, 2, 13 | 3bitr4i 292 | 1 ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∨ wo 382 ∧ wa 383 ∧ w3a 1072 = wceq 1596 ∈ wcel 2103 ≠ wne 2896 dom cdm 5218 (class class class)co 6765 ℂcc 10047 1c1 10050 ici 10051 -cneg 10380 2c2 11183 ↑cexp 12975 arctancatan 24711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-uni 4545 df-iun 4630 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-om 7183 df-2nd 7286 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-er 7862 df-en 8073 df-dom 8074 df-sdom 8075 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-nn 11134 df-2 11192 df-n0 11406 df-z 11491 df-uz 11801 df-seq 12917 df-exp 12976 df-atan 24714 |
This theorem is referenced by: atandm4 24726 atanre 24732 atandmneg 24753 atandmcj 24756 atandmtan 24767 bndatandm 24776 |
Copyright terms: Public domain | W3C validator |