![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > atandm | Structured version Visualization version GIF version |
Description: Since the property is a little lengthy, we abbreviate 𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i as 𝐴 ∈ dom arctan. This is the necessary precondition for the definition of arctan to make sense. (Contributed by Mario Carneiro, 31-Mar-2015.) |
Ref | Expression |
---|---|
atandm | ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3690 | . . 3 ⊢ (𝐴 ∈ (ℂ ∖ {-i, i}) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ {-i, i})) | |
2 | elprg 4304 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴 ∈ {-i, i} ↔ (𝐴 = -i ∨ 𝐴 = i))) | |
3 | 2 | notbid 307 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (¬ 𝐴 ∈ {-i, i} ↔ ¬ (𝐴 = -i ∨ 𝐴 = i))) |
4 | neanior 2988 | . . . . 5 ⊢ ((𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ ¬ (𝐴 = -i ∨ 𝐴 = i)) | |
5 | 3, 4 | syl6bbr 278 | . . . 4 ⊢ (𝐴 ∈ ℂ → (¬ 𝐴 ∈ {-i, i} ↔ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) |
6 | 5 | pm5.32i 672 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ {-i, i}) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) |
7 | 1, 6 | bitri 264 | . 2 ⊢ (𝐴 ∈ (ℂ ∖ {-i, i}) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) |
8 | ovex 6793 | . . . 4 ⊢ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))) ∈ V | |
9 | df-atan 24714 | . . . 4 ⊢ arctan = (𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥)))))) | |
10 | 8, 9 | dmmpti 6136 | . . 3 ⊢ dom arctan = (ℂ ∖ {-i, i}) |
11 | 10 | eleq2i 2795 | . 2 ⊢ (𝐴 ∈ dom arctan ↔ 𝐴 ∈ (ℂ ∖ {-i, i})) |
12 | 3anass 1081 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i))) | |
13 | 7, 11, 12 | 3bitr4i 292 | 1 ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∨ wo 382 ∧ wa 383 ∧ w3a 1072 = wceq 1596 ∈ wcel 2103 ≠ wne 2896 ∖ cdif 3677 {cpr 4287 dom cdm 5218 ‘cfv 6001 (class class class)co 6765 ℂcc 10047 1c1 10050 ici 10051 + caddc 10052 · cmul 10054 − cmin 10379 -cneg 10380 / cdiv 10797 2c2 11183 logclog 24421 arctancatan 24711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-sbc 3542 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-mpt 4838 df-id 5128 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-iota 5964 df-fun 6003 df-fn 6004 df-fv 6009 df-ov 6768 df-atan 24714 |
This theorem is referenced by: atandm2 24724 atandm3 24725 atancj 24757 2efiatan 24765 tanatan 24766 dvatan 24782 |
Copyright terms: Public domain | W3C validator |