MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atandm Structured version   Visualization version   GIF version

Theorem atandm 24723
Description: Since the property is a little lengthy, we abbreviate 𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i as 𝐴 ∈ dom arctan. This is the necessary precondition for the definition of arctan to make sense. (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atandm (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))

Proof of Theorem atandm
StepHypRef Expression
1 eldif 3690 . . 3 (𝐴 ∈ (ℂ ∖ {-i, i}) ↔ (𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ {-i, i}))
2 elprg 4304 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 ∈ {-i, i} ↔ (𝐴 = -i ∨ 𝐴 = i)))
32notbid 307 . . . . 5 (𝐴 ∈ ℂ → (¬ 𝐴 ∈ {-i, i} ↔ ¬ (𝐴 = -i ∨ 𝐴 = i)))
4 neanior 2988 . . . . 5 ((𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ ¬ (𝐴 = -i ∨ 𝐴 = i))
53, 4syl6bbr 278 . . . 4 (𝐴 ∈ ℂ → (¬ 𝐴 ∈ {-i, i} ↔ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
65pm5.32i 672 . . 3 ((𝐴 ∈ ℂ ∧ ¬ 𝐴 ∈ {-i, i}) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
71, 6bitri 264 . 2 (𝐴 ∈ (ℂ ∖ {-i, i}) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
8 ovex 6793 . . . 4 ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))) ∈ V
9 df-atan 24714 . . . 4 arctan = (𝑥 ∈ (ℂ ∖ {-i, i}) ↦ ((i / 2) · ((log‘(1 − (i · 𝑥))) − (log‘(1 + (i · 𝑥))))))
108, 9dmmpti 6136 . . 3 dom arctan = (ℂ ∖ {-i, i})
1110eleq2i 2795 . 2 (𝐴 ∈ dom arctan ↔ 𝐴 ∈ (ℂ ∖ {-i, i}))
12 3anass 1081 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i) ↔ (𝐴 ∈ ℂ ∧ (𝐴 ≠ -i ∧ 𝐴 ≠ i)))
137, 11, 123bitr4i 292 1 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wo 382  wa 383  w3a 1072   = wceq 1596  wcel 2103  wne 2896  cdif 3677  {cpr 4287  dom cdm 5218  cfv 6001  (class class class)co 6765  cc 10047  1c1 10050  ici 10051   + caddc 10052   · cmul 10054  cmin 10379  -cneg 10380   / cdiv 10797  2c2 11183  logclog 24421  arctancatan 24711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pr 5011
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-rab 3023  df-v 3306  df-sbc 3542  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-iota 5964  df-fun 6003  df-fn 6004  df-fv 6009  df-ov 6768  df-atan 24714
This theorem is referenced by:  atandm2  24724  atandm3  24725  atancj  24757  2efiatan  24765  tanatan  24766  dvatan  24782
  Copyright terms: Public domain W3C validator