MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  atancj Structured version   Visualization version   GIF version

Theorem atancj 24807
Description: The arctangent function distributes under conjugation. (The condition that ℜ(𝐴) ≠ 0 is necessary because the branch cuts are chosen so that the negative imaginary line "agrees with" neighboring values with negative real part, while the positive imaginary line agrees with values with positive real part. This makes atanneg 24804 true unconditionally but messes up conjugation symmetry, and it is impossible to have both in a single-valued function. The claim is true on the imaginary line between -1 and 1, though.) (Contributed by Mario Carneiro, 31-Mar-2015.)
Assertion
Ref Expression
atancj ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ dom arctan ∧ (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴))))

Proof of Theorem atancj
StepHypRef Expression
1 simpl 474 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ∈ ℂ)
2 simpr 479 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ≠ 0)
3 fveq2 6340 . . . . . 6 (𝐴 = -i → (ℜ‘𝐴) = (ℜ‘-i))
4 ax-icn 10158 . . . . . . . 8 i ∈ ℂ
54renegi 14090 . . . . . . 7 (ℜ‘-i) = -(ℜ‘i)
6 rei 14066 . . . . . . . 8 (ℜ‘i) = 0
76negeqi 10437 . . . . . . 7 -(ℜ‘i) = -0
8 neg0 10490 . . . . . . 7 -0 = 0
95, 7, 83eqtri 2774 . . . . . 6 (ℜ‘-i) = 0
103, 9syl6eq 2798 . . . . 5 (𝐴 = -i → (ℜ‘𝐴) = 0)
1110necon3i 2952 . . . 4 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ -i)
122, 11syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ≠ -i)
13 fveq2 6340 . . . . . 6 (𝐴 = i → (ℜ‘𝐴) = (ℜ‘i))
1413, 6syl6eq 2798 . . . . 5 (𝐴 = i → (ℜ‘𝐴) = 0)
1514necon3i 2952 . . . 4 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ i)
162, 15syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ≠ i)
17 atandm 24773 . . 3 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ 𝐴 ≠ -i ∧ 𝐴 ≠ i))
181, 12, 16, 17syl3anbrc 1407 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → 𝐴 ∈ dom arctan)
19 halfcl 11420 . . . . . 6 (i ∈ ℂ → (i / 2) ∈ ℂ)
204, 19ax-mp 5 . . . . 5 (i / 2) ∈ ℂ
21 ax-1cn 10157 . . . . . . . 8 1 ∈ ℂ
22 mulcl 10183 . . . . . . . . 9 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ)
234, 1, 22sylancr 698 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · 𝐴) ∈ ℂ)
24 subcl 10443 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 − (i · 𝐴)) ∈ ℂ)
2521, 23, 24sylancr 698 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · 𝐴)) ∈ ℂ)
26 atandm2 24774 . . . . . . . . 9 (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2718, 26sylib 208 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ ℂ ∧ (1 − (i · 𝐴)) ≠ 0 ∧ (1 + (i · 𝐴)) ≠ 0))
2827simp2d 1135 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · 𝐴)) ≠ 0)
2925, 28logcld 24487 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 − (i · 𝐴))) ∈ ℂ)
30 addcl 10181 . . . . . . . 8 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (1 + (i · 𝐴)) ∈ ℂ)
3121, 23, 30sylancr 698 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · 𝐴)) ∈ ℂ)
3227simp3d 1136 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · 𝐴)) ≠ 0)
3331, 32logcld 24487 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 + (i · 𝐴))) ∈ ℂ)
3429, 33subcld 10555 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ)
35 cjmul 14052 . . . . 5 (((i / 2) ∈ ℂ ∧ ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))) ∈ ℂ) → (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
3620, 34, 35sylancr 698 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
37 2ne0 11276 . . . . . . . 8 2 ≠ 0
38 2cn 11254 . . . . . . . . 9 2 ∈ ℂ
394, 38cjdivi 14101 . . . . . . . 8 (2 ≠ 0 → (∗‘(i / 2)) = ((∗‘i) / (∗‘2)))
4037, 39ax-mp 5 . . . . . . 7 (∗‘(i / 2)) = ((∗‘i) / (∗‘2))
41 divneg 10882 . . . . . . . . 9 ((i ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(i / 2) = (-i / 2))
424, 38, 37, 41mp3an 1561 . . . . . . . 8 -(i / 2) = (-i / 2)
43 cji 14069 . . . . . . . . 9 (∗‘i) = -i
44 2re 11253 . . . . . . . . . 10 2 ∈ ℝ
45 cjre 14049 . . . . . . . . . 10 (2 ∈ ℝ → (∗‘2) = 2)
4644, 45ax-mp 5 . . . . . . . . 9 (∗‘2) = 2
4743, 46oveq12i 6813 . . . . . . . 8 ((∗‘i) / (∗‘2)) = (-i / 2)
4842, 47eqtr4i 2773 . . . . . . 7 -(i / 2) = ((∗‘i) / (∗‘2))
4940, 48eqtr4i 2773 . . . . . 6 (∗‘(i / 2)) = -(i / 2)
5049oveq1i 6811 . . . . 5 ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = (-(i / 2) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
5134cjcld 14106 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) ∈ ℂ)
52 mulneg12 10631 . . . . . 6 (((i / 2) ∈ ℂ ∧ (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) ∈ ℂ) → (-(i / 2) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
5320, 51, 52sylancr 698 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-(i / 2) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
5450, 53syl5eq 2794 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘(i / 2)) · (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
55 cjsub 14059 . . . . . . . . 9 (((log‘(1 − (i · 𝐴))) ∈ ℂ ∧ (log‘(1 + (i · 𝐴))) ∈ ℂ) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((∗‘(log‘(1 − (i · 𝐴)))) − (∗‘(log‘(1 + (i · 𝐴))))))
5629, 33, 55syl2anc 696 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((∗‘(log‘(1 − (i · 𝐴)))) − (∗‘(log‘(1 + (i · 𝐴))))))
57 imsub 14045 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
5821, 23, 57sylancr 698 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
59 reim 14019 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
6059adantr 472 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) = (ℑ‘(i · 𝐴)))
6160oveq2d 6817 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((ℑ‘1) − (ℜ‘𝐴)) = ((ℑ‘1) − (ℑ‘(i · 𝐴))))
6258, 61eqtr4d 2785 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) = ((ℑ‘1) − (ℜ‘𝐴)))
63 df-neg 10432 . . . . . . . . . . . . . 14 -(ℜ‘𝐴) = (0 − (ℜ‘𝐴))
64 im1 14065 . . . . . . . . . . . . . . 15 (ℑ‘1) = 0
6564oveq1i 6811 . . . . . . . . . . . . . 14 ((ℑ‘1) − (ℜ‘𝐴)) = (0 − (ℜ‘𝐴))
6663, 65eqtr4i 2773 . . . . . . . . . . . . 13 -(ℜ‘𝐴) = ((ℑ‘1) − (ℜ‘𝐴))
6762, 66syl6eqr 2800 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) = -(ℜ‘𝐴))
68 recl 14020 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
6968adantr 472 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℝ)
7069recnd 10231 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℜ‘𝐴) ∈ ℂ)
7170, 2negne0d 10553 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -(ℜ‘𝐴) ≠ 0)
7267, 71eqnetrd 2987 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 − (i · 𝐴))) ≠ 0)
73 logcj 24522 . . . . . . . . . . 11 (((1 − (i · 𝐴)) ∈ ℂ ∧ (ℑ‘(1 − (i · 𝐴))) ≠ 0) → (log‘(∗‘(1 − (i · 𝐴)))) = (∗‘(log‘(1 − (i · 𝐴)))))
7425, 72, 73syl2anc 696 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 − (i · 𝐴)))) = (∗‘(log‘(1 − (i · 𝐴)))))
75 cjsub 14059 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (∗‘(1 − (i · 𝐴))) = ((∗‘1) − (∗‘(i · 𝐴))))
7621, 23, 75sylancr 698 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 − (i · 𝐴))) = ((∗‘1) − (∗‘(i · 𝐴))))
77 1re 10202 . . . . . . . . . . . . . 14 1 ∈ ℝ
78 cjre 14049 . . . . . . . . . . . . . 14 (1 ∈ ℝ → (∗‘1) = 1)
7977, 78mp1i 13 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘1) = 1)
80 cjmul 14052 . . . . . . . . . . . . . . 15 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴)))
814, 1, 80sylancr 698 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(i · 𝐴)) = ((∗‘i) · (∗‘𝐴)))
8243oveq1i 6811 . . . . . . . . . . . . . . 15 ((∗‘i) · (∗‘𝐴)) = (-i · (∗‘𝐴))
83 cjcl 14015 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
8483adantr 472 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘𝐴) ∈ ℂ)
85 mulneg1 10629 . . . . . . . . . . . . . . . 16 ((i ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (-i · (∗‘𝐴)) = -(i · (∗‘𝐴)))
864, 84, 85sylancr 698 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (-i · (∗‘𝐴)) = -(i · (∗‘𝐴)))
8782, 86syl5eq 2794 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘i) · (∗‘𝐴)) = -(i · (∗‘𝐴)))
8881, 87eqtrd 2782 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(i · 𝐴)) = -(i · (∗‘𝐴)))
8979, 88oveq12d 6819 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘1) − (∗‘(i · 𝐴))) = (1 − -(i · (∗‘𝐴))))
90 mulcl 10183 . . . . . . . . . . . . . 14 ((i ∈ ℂ ∧ (∗‘𝐴) ∈ ℂ) → (i · (∗‘𝐴)) ∈ ℂ)
914, 84, 90sylancr 698 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (i · (∗‘𝐴)) ∈ ℂ)
92 subneg 10493 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 − -(i · (∗‘𝐴))) = (1 + (i · (∗‘𝐴))))
9321, 91, 92sylancr 698 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − -(i · (∗‘𝐴))) = (1 + (i · (∗‘𝐴))))
9476, 89, 933eqtrd 2786 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 − (i · 𝐴))) = (1 + (i · (∗‘𝐴))))
9594fveq2d 6344 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 − (i · 𝐴)))) = (log‘(1 + (i · (∗‘𝐴)))))
9674, 95eqtr3d 2784 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(log‘(1 − (i · 𝐴)))) = (log‘(1 + (i · (∗‘𝐴)))))
97 imadd 14044 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
9821, 23, 97sylancr 698 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 + (i · 𝐴))) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
9960oveq2d 6817 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (0 + (ℜ‘𝐴)) = (0 + (ℑ‘(i · 𝐴))))
10064oveq1i 6811 . . . . . . . . . . . . . 14 ((ℑ‘1) + (ℑ‘(i · 𝐴))) = (0 + (ℑ‘(i · 𝐴)))
10199, 100syl6eqr 2800 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (0 + (ℜ‘𝐴)) = ((ℑ‘1) + (ℑ‘(i · 𝐴))))
10270addid2d 10400 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (0 + (ℜ‘𝐴)) = (ℜ‘𝐴))
10398, 101, 1023eqtr2d 2788 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 + (i · 𝐴))) = (ℜ‘𝐴))
104103, 2eqnetrd 2987 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (ℑ‘(1 + (i · 𝐴))) ≠ 0)
105 logcj 24522 . . . . . . . . . . 11 (((1 + (i · 𝐴)) ∈ ℂ ∧ (ℑ‘(1 + (i · 𝐴))) ≠ 0) → (log‘(∗‘(1 + (i · 𝐴)))) = (∗‘(log‘(1 + (i · 𝐴)))))
10631, 104, 105syl2anc 696 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 + (i · 𝐴)))) = (∗‘(log‘(1 + (i · 𝐴)))))
107 cjadd 14051 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · 𝐴) ∈ ℂ) → (∗‘(1 + (i · 𝐴))) = ((∗‘1) + (∗‘(i · 𝐴))))
10821, 23, 107sylancr 698 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 + (i · 𝐴))) = ((∗‘1) + (∗‘(i · 𝐴))))
10979, 88oveq12d 6819 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘1) + (∗‘(i · 𝐴))) = (1 + -(i · (∗‘𝐴))))
110 negsub 10492 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 + -(i · (∗‘𝐴))) = (1 − (i · (∗‘𝐴))))
11121, 91, 110sylancr 698 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + -(i · (∗‘𝐴))) = (1 − (i · (∗‘𝐴))))
112108, 109, 1113eqtrd 2786 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(1 + (i · 𝐴))) = (1 − (i · (∗‘𝐴))))
113112fveq2d 6344 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(∗‘(1 + (i · 𝐴)))) = (log‘(1 − (i · (∗‘𝐴)))))
114106, 113eqtr3d 2784 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(log‘(1 + (i · 𝐴)))) = (log‘(1 − (i · (∗‘𝐴)))))
11596, 114oveq12d 6819 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((∗‘(log‘(1 − (i · 𝐴)))) − (∗‘(log‘(1 + (i · 𝐴))))) = ((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))))
11656, 115eqtrd 2782 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))))
117116negeqd 10438 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = -((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))))
118 addcl 10181 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 + (i · (∗‘𝐴))) ∈ ℂ)
11921, 91, 118sylancr 698 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · (∗‘𝐴))) ∈ ℂ)
120 atandmcj 24806 . . . . . . . . . 10 (𝐴 ∈ dom arctan → (∗‘𝐴) ∈ dom arctan)
12118, 120syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘𝐴) ∈ dom arctan)
122 atandm2 24774 . . . . . . . . . 10 ((∗‘𝐴) ∈ dom arctan ↔ ((∗‘𝐴) ∈ ℂ ∧ (1 − (i · (∗‘𝐴))) ≠ 0 ∧ (1 + (i · (∗‘𝐴))) ≠ 0))
123122simp3bi 1139 . . . . . . . . 9 ((∗‘𝐴) ∈ dom arctan → (1 + (i · (∗‘𝐴))) ≠ 0)
124121, 123syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 + (i · (∗‘𝐴))) ≠ 0)
125119, 124logcld 24487 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 + (i · (∗‘𝐴)))) ∈ ℂ)
126 subcl 10443 . . . . . . . . 9 ((1 ∈ ℂ ∧ (i · (∗‘𝐴)) ∈ ℂ) → (1 − (i · (∗‘𝐴))) ∈ ℂ)
12721, 91, 126sylancr 698 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · (∗‘𝐴))) ∈ ℂ)
128122simp2bi 1138 . . . . . . . . 9 ((∗‘𝐴) ∈ dom arctan → (1 − (i · (∗‘𝐴))) ≠ 0)
129121, 128syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (1 − (i · (∗‘𝐴))) ≠ 0)
130127, 129logcld 24487 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (log‘(1 − (i · (∗‘𝐴)))) ∈ ℂ)
131125, 130negsubdi2d 10571 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -((log‘(1 + (i · (∗‘𝐴)))) − (log‘(1 − (i · (∗‘𝐴))))) = ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴))))))
132117, 131eqtrd 2782 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))) = ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴))))))
133132oveq2d 6817 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → ((i / 2) · -(∗‘((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
13436, 54, 1333eqtrd 2786 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
135 atanval 24781 . . . . 5 (𝐴 ∈ dom arctan → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
13618, 135syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (arctan‘𝐴) = ((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴))))))
137136fveq2d 6344 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(arctan‘𝐴)) = (∗‘((i / 2) · ((log‘(1 − (i · 𝐴))) − (log‘(1 + (i · 𝐴)))))))
138 atanval 24781 . . . 4 ((∗‘𝐴) ∈ dom arctan → (arctan‘(∗‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
139121, 138syl 17 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (arctan‘(∗‘𝐴)) = ((i / 2) · ((log‘(1 − (i · (∗‘𝐴)))) − (log‘(1 + (i · (∗‘𝐴)))))))
140134, 137, 1393eqtr4d 2792 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴)))
14118, 140jca 555 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ≠ 0) → (𝐴 ∈ dom arctan ∧ (∗‘(arctan‘𝐴)) = (arctan‘(∗‘𝐴))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1072   = wceq 1620  wcel 2127  wne 2920  dom cdm 5254  cfv 6037  (class class class)co 6801  cc 10097  cr 10098  0cc0 10099  1c1 10100  ici 10101   + caddc 10102   · cmul 10104  cmin 10429  -cneg 10430   / cdiv 10847  2c2 11233  ccj 14006  cre 14007  cim 14008  logclog 24471  arctancatan 24761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-inf2 8699  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176  ax-pre-sup 10177  ax-addf 10178  ax-mulf 10179
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-fal 1626  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-int 4616  df-iun 4662  df-iin 4663  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-se 5214  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-isom 6046  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-of 7050  df-om 7219  df-1st 7321  df-2nd 7322  df-supp 7452  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7899  df-map 8013  df-pm 8014  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8429  df-fi 8470  df-sup 8501  df-inf 8502  df-oi 8568  df-card 8926  df-cda 9153  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-div 10848  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-7 11247  df-8 11248  df-9 11249  df-n0 11456  df-z 11541  df-dec 11657  df-uz 11851  df-q 11953  df-rp 11997  df-xneg 12110  df-xadd 12111  df-xmul 12112  df-ioo 12343  df-ioc 12344  df-ico 12345  df-icc 12346  df-fz 12491  df-fzo 12631  df-fl 12758  df-mod 12834  df-seq 12967  df-exp 13026  df-fac 13226  df-bc 13255  df-hash 13283  df-shft 13977  df-cj 14009  df-re 14010  df-im 14011  df-sqrt 14145  df-abs 14146  df-limsup 14372  df-clim 14389  df-rlim 14390  df-sum 14587  df-ef 14968  df-sin 14970  df-cos 14971  df-pi 14973  df-struct 16032  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-ress 16038  df-plusg 16127  df-mulr 16128  df-starv 16129  df-sca 16130  df-vsca 16131  df-ip 16132  df-tset 16133  df-ple 16134  df-ds 16137  df-unif 16138  df-hom 16139  df-cco 16140  df-rest 16256  df-topn 16257  df-0g 16275  df-gsum 16276  df-topgen 16277  df-pt 16278  df-prds 16281  df-xrs 16335  df-qtop 16340  df-imas 16341  df-xps 16343  df-mre 16419  df-mrc 16420  df-acs 16422  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-submnd 17508  df-mulg 17713  df-cntz 17921  df-cmn 18366  df-psmet 19911  df-xmet 19912  df-met 19913  df-bl 19914  df-mopn 19915  df-fbas 19916  df-fg 19917  df-cnfld 19920  df-top 20872  df-topon 20889  df-topsp 20910  df-bases 20923  df-cld 20996  df-ntr 20997  df-cls 20998  df-nei 21075  df-lp 21113  df-perf 21114  df-cn 21204  df-cnp 21205  df-haus 21292  df-tx 21538  df-hmeo 21731  df-fil 21822  df-fm 21914  df-flim 21915  df-flf 21916  df-xms 22297  df-ms 22298  df-tms 22299  df-cncf 22853  df-limc 23800  df-dv 23801  df-log 24473  df-atan 24764
This theorem is referenced by:  atanrecl  24808
  Copyright terms: Public domain W3C validator