MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asymref2 Structured version   Visualization version   GIF version

Theorem asymref2 5654
Description: Two ways of saying a relation is antisymmetric and reflexive. (Contributed by NM, 6-May-2008.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
asymref2 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ (∀𝑥 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem asymref2
StepHypRef Expression
1 asymref 5653 . 2 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦))
2 albiim 1968 . . 3 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦) ↔ (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥))))
32ralbii 3129 . 2 (∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦) ↔ ∀𝑥 𝑅(∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥))))
4 r19.26 3212 . . 3 (∀𝑥 𝑅(∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥))) ↔ (∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 𝑅𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥))))
5 ancom 452 . . 3 ((∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 𝑅𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥))) ↔ (∀𝑥 𝑅𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
6 equcom 2103 . . . . . . . 8 (𝑥 = 𝑦𝑦 = 𝑥)
76imbi1i 338 . . . . . . 7 ((𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ (𝑦 = 𝑥 → (𝑥𝑅𝑦𝑦𝑅𝑥)))
87albii 1895 . . . . . 6 (∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ ∀𝑦(𝑦 = 𝑥 → (𝑥𝑅𝑦𝑦𝑅𝑥)))
9 breq2 4790 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑥𝑅𝑦𝑥𝑅𝑥))
10 breq1 4789 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝑅𝑥𝑥𝑅𝑥))
119, 10anbi12d 616 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑥𝑥𝑅𝑥)))
12 anidm 554 . . . . . . . 8 ((𝑥𝑅𝑥𝑥𝑅𝑥) ↔ 𝑥𝑅𝑥)
1311, 12syl6bb 276 . . . . . . 7 (𝑦 = 𝑥 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥𝑅𝑥))
1413equsalvw 2089 . . . . . 6 (∀𝑦(𝑦 = 𝑥 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ 𝑥𝑅𝑥)
158, 14bitri 264 . . . . 5 (∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ 𝑥𝑅𝑥)
1615ralbii 3129 . . . 4 (∀𝑥 𝑅𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ ∀𝑥 𝑅𝑥𝑅𝑥)
17 df-ral 3066 . . . . 5 (∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
18 df-br 4787 . . . . . . . . . . . . 13 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
19 vex 3354 . . . . . . . . . . . . . . 15 𝑥 ∈ V
20 vex 3354 . . . . . . . . . . . . . . 15 𝑦 ∈ V
2119, 20opeluu 5066 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → (𝑥 𝑅𝑦 𝑅))
2221simpld 482 . . . . . . . . . . . . 13 (⟨𝑥, 𝑦⟩ ∈ 𝑅𝑥 𝑅)
2318, 22sylbi 207 . . . . . . . . . . . 12 (𝑥𝑅𝑦𝑥 𝑅)
2423adantr 466 . . . . . . . . . . 11 ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 𝑅)
2524pm2.24d 148 . . . . . . . . . 10 ((𝑥𝑅𝑦𝑦𝑅𝑥) → (¬ 𝑥 𝑅𝑥 = 𝑦))
2625com12 32 . . . . . . . . 9 𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
2726alrimiv 2007 . . . . . . . 8 𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
28 id 22 . . . . . . . 8 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
2927, 28ja 174 . . . . . . 7 ((𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)) → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
30 ax-1 6 . . . . . . 7 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) → (𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
3129, 30impbii 199 . . . . . 6 ((𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)) ↔ ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
3231albii 1895 . . . . 5 (∀𝑥(𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
3317, 32bitri 264 . . . 4 (∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
3416, 33anbi12i 612 . . 3 ((∀𝑥 𝑅𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)) ↔ (∀𝑥 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
354, 5, 343bitri 286 . 2 (∀𝑥 𝑅(∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥))) ↔ (∀𝑥 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
361, 3, 353bitri 286 1 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ (∀𝑥 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382  wal 1629   = wceq 1631  wcel 2145  wral 3061  cin 3722  cop 4322   cuni 4574   class class class wbr 4786   I cid 5156  ccnv 5248  cres 5251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-res 5261
This theorem is referenced by:  pslem  17414  psss  17422
  Copyright terms: Public domain W3C validator