MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asymref2 Structured version   Visualization version   GIF version

Theorem asymref2 5501
Description: Two ways of saying a relation is antisymmetric and reflexive. (Contributed by NM, 6-May-2008.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
Assertion
Ref Expression
asymref2 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ (∀𝑥 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem asymref2
StepHypRef Expression
1 asymref 5500 . 2 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦))
2 albiim 1814 . . 3 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦) ↔ (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥))))
32ralbii 2977 . 2 (∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦) ↔ ∀𝑥 𝑅(∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥))))
4 r19.26 3060 . . 3 (∀𝑥 𝑅(∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥))) ↔ (∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 𝑅𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥))))
5 ancom 466 . . 3 ((∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑥 𝑅𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥))) ↔ (∀𝑥 𝑅𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
6 equcom 1943 . . . . . . . 8 (𝑥 = 𝑦𝑦 = 𝑥)
76imbi1i 339 . . . . . . 7 ((𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ (𝑦 = 𝑥 → (𝑥𝑅𝑦𝑦𝑅𝑥)))
87albii 1745 . . . . . 6 (∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ ∀𝑦(𝑦 = 𝑥 → (𝑥𝑅𝑦𝑦𝑅𝑥)))
9 breq2 4648 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑥𝑅𝑦𝑥𝑅𝑥))
10 breq1 4647 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝑅𝑥𝑥𝑅𝑥))
119, 10anbi12d 746 . . . . . . . 8 (𝑦 = 𝑥 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑥𝑅𝑥𝑥𝑅𝑥)))
12 anidm 675 . . . . . . . 8 ((𝑥𝑅𝑥𝑥𝑅𝑥) ↔ 𝑥𝑅𝑥)
1311, 12syl6bb 276 . . . . . . 7 (𝑦 = 𝑥 → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥𝑅𝑥))
1413equsalvw 1929 . . . . . 6 (∀𝑦(𝑦 = 𝑥 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ 𝑥𝑅𝑥)
158, 14bitri 264 . . . . 5 (∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ 𝑥𝑅𝑥)
1615ralbii 2977 . . . 4 (∀𝑥 𝑅𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ↔ ∀𝑥 𝑅𝑥𝑅𝑥)
17 df-ral 2914 . . . . 5 (∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
18 df-br 4645 . . . . . . . . . . . . 13 (𝑥𝑅𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑅)
19 vex 3198 . . . . . . . . . . . . . . 15 𝑥 ∈ V
20 vex 3198 . . . . . . . . . . . . . . 15 𝑦 ∈ V
2119, 20opeluu 4930 . . . . . . . . . . . . . 14 (⟨𝑥, 𝑦⟩ ∈ 𝑅 → (𝑥 𝑅𝑦 𝑅))
2221simpld 475 . . . . . . . . . . . . 13 (⟨𝑥, 𝑦⟩ ∈ 𝑅𝑥 𝑅)
2318, 22sylbi 207 . . . . . . . . . . . 12 (𝑥𝑅𝑦𝑥 𝑅)
2423adantr 481 . . . . . . . . . . 11 ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 𝑅)
2524pm2.24d 147 . . . . . . . . . 10 ((𝑥𝑅𝑦𝑦𝑅𝑥) → (¬ 𝑥 𝑅𝑥 = 𝑦))
2625com12 32 . . . . . . . . 9 𝑥 𝑅 → ((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
2726alrimiv 1853 . . . . . . . 8 𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
28 id 22 . . . . . . . 8 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
2927, 28ja 173 . . . . . . 7 ((𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)) → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
30 ax-1 6 . . . . . . 7 (∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) → (𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
3129, 30impbii 199 . . . . . 6 ((𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)) ↔ ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
3231albii 1745 . . . . 5 (∀𝑥(𝑥 𝑅 → ∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
3317, 32bitri 264 . . . 4 (∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
3416, 33anbi12i 732 . . 3 ((∀𝑥 𝑅𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥)) ∧ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)) ↔ (∀𝑥 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
354, 5, 343bitri 286 . 2 (∀𝑥 𝑅(∀𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦) ∧ ∀𝑦(𝑥 = 𝑦 → (𝑥𝑅𝑦𝑦𝑅𝑥))) ↔ (∀𝑥 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
361, 3, 353bitri 286 1 ((𝑅𝑅) = ( I ↾ 𝑅) ↔ (∀𝑥 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  wal 1479   = wceq 1481  wcel 1988  wral 2909  cin 3566  cop 4174   cuni 4427   class class class wbr 4644   I cid 5013  ccnv 5103  cres 5106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-res 5116
This theorem is referenced by:  pslem  17187  psss  17195
  Copyright terms: Public domain W3C validator