Mathbox for Jarvin Udandy < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  astbstanbst Structured version   Visualization version   GIF version

Theorem astbstanbst 41499
 Description: Given a is equivalent to T., also given that b is equivalent to T, there exists a proof for a and b is equivalent to T. (Contributed by Jarvin Udandy, 29-Aug-2016.)
Hypotheses
Ref Expression
astbstanbst.1 (𝜑 ↔ ⊤)
astbstanbst.2 (𝜓 ↔ ⊤)
Assertion
Ref Expression
astbstanbst ((𝜑𝜓) ↔ ⊤)

Proof of Theorem astbstanbst
StepHypRef Expression
1 astbstanbst.1 . . . 4 (𝜑 ↔ ⊤)
21aistia 41487 . . 3 𝜑
3 astbstanbst.2 . . . 4 (𝜓 ↔ ⊤)
43aistia 41487 . . 3 𝜓
52, 4pm3.2i 470 . 2 (𝜑𝜓)
65bitru 1609 1 ((𝜑𝜓) ↔ ⊤)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 383  ⊤wtru 1597 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-an 385  df-tru 1599 This theorem is referenced by:  dandysum2p2e4  41588
 Copyright terms: Public domain W3C validator