MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assamulgscmlem2 Structured version   Visualization version   GIF version

Theorem assamulgscmlem2 19564
Description: Lemma for assamulgscm 19565 (induction step). (Contributed by AV, 26-Aug-2019.)
Hypotheses
Ref Expression
assamulgscm.v 𝑉 = (Base‘𝑊)
assamulgscm.f 𝐹 = (Scalar‘𝑊)
assamulgscm.b 𝐵 = (Base‘𝐹)
assamulgscm.s · = ( ·𝑠𝑊)
assamulgscm.g 𝐺 = (mulGrp‘𝐹)
assamulgscm.p = (.g𝐺)
assamulgscm.h 𝐻 = (mulGrp‘𝑊)
assamulgscm.e 𝐸 = (.g𝐻)
Assertion
Ref Expression
assamulgscmlem2 (𝑦 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))

Proof of Theorem assamulgscmlem2
StepHypRef Expression
1 assaring 19535 . . . . . . . 8 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
2 assamulgscm.h . . . . . . . . 9 𝐻 = (mulGrp‘𝑊)
32ringmgp 18761 . . . . . . . 8 (𝑊 ∈ Ring → 𝐻 ∈ Mnd)
41, 3syl 17 . . . . . . 7 (𝑊 ∈ AssAlg → 𝐻 ∈ Mnd)
54adantl 467 . . . . . 6 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐻 ∈ Mnd)
65adantl 467 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐻 ∈ Mnd)
76adantr 466 . . . 4 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → 𝐻 ∈ Mnd)
8 simpll 750 . . . 4 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → 𝑦 ∈ ℕ0)
9 assalmod 19534 . . . . . . . 8 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
109adantl 467 . . . . . . 7 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑊 ∈ LMod)
11 simpll 750 . . . . . . 7 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐴𝐵)
12 simplr 752 . . . . . . 7 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝑋𝑉)
13 assamulgscm.v . . . . . . . 8 𝑉 = (Base‘𝑊)
14 assamulgscm.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
15 assamulgscm.s . . . . . . . 8 · = ( ·𝑠𝑊)
16 assamulgscm.b . . . . . . . 8 𝐵 = (Base‘𝐹)
1713, 14, 15, 16lmodvscl 19090 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝐴𝐵𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
1810, 11, 12, 17syl3anc 1476 . . . . . 6 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → (𝐴 · 𝑋) ∈ 𝑉)
1918adantl 467 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝐴 · 𝑋) ∈ 𝑉)
2019adantr 466 . . . 4 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → (𝐴 · 𝑋) ∈ 𝑉)
212, 13mgpbas 18703 . . . . 5 𝑉 = (Base‘𝐻)
22 assamulgscm.e . . . . 5 𝐸 = (.g𝐻)
23 eqid 2771 . . . . . 6 (.r𝑊) = (.r𝑊)
242, 23mgpplusg 18701 . . . . 5 (.r𝑊) = (+g𝐻)
2521, 22, 24mulgnn0p1 17760 . . . 4 ((𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ (𝐴 · 𝑋) ∈ 𝑉) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)))
267, 8, 20, 25syl3anc 1476 . . 3 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)))
27 oveq1 6800 . . . 4 ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)) = (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)))
28 simprr 756 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑊 ∈ AssAlg)
2914assasca 19536 . . . . . . . . . 10 (𝑊 ∈ AssAlg → 𝐹 ∈ CRing)
30 crngring 18766 . . . . . . . . . 10 (𝐹 ∈ CRing → 𝐹 ∈ Ring)
31 assamulgscm.g . . . . . . . . . . 11 𝐺 = (mulGrp‘𝐹)
3231ringmgp 18761 . . . . . . . . . 10 (𝐹 ∈ Ring → 𝐺 ∈ Mnd)
3329, 30, 323syl 18 . . . . . . . . 9 (𝑊 ∈ AssAlg → 𝐺 ∈ Mnd)
3433adantl 467 . . . . . . . 8 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐺 ∈ Mnd)
3534adantl 467 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐺 ∈ Mnd)
36 simpl 468 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑦 ∈ ℕ0)
3716a1i 11 . . . . . . . . . . . . 13 (𝑊 ∈ AssAlg → 𝐵 = (Base‘𝐹))
3814fveq2i 6335 . . . . . . . . . . . . 13 (Base‘𝐹) = (Base‘(Scalar‘𝑊))
3937, 38syl6eq 2821 . . . . . . . . . . . 12 (𝑊 ∈ AssAlg → 𝐵 = (Base‘(Scalar‘𝑊)))
4039eleq2d 2836 . . . . . . . . . . 11 (𝑊 ∈ AssAlg → (𝐴𝐵𝐴 ∈ (Base‘(Scalar‘𝑊))))
4140biimpcd 239 . . . . . . . . . 10 (𝐴𝐵 → (𝑊 ∈ AssAlg → 𝐴 ∈ (Base‘(Scalar‘𝑊))))
4241adantr 466 . . . . . . . . 9 ((𝐴𝐵𝑋𝑉) → (𝑊 ∈ AssAlg → 𝐴 ∈ (Base‘(Scalar‘𝑊))))
4342imp 393 . . . . . . . 8 (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → 𝐴 ∈ (Base‘(Scalar‘𝑊)))
4443adantl 467 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐴 ∈ (Base‘(Scalar‘𝑊)))
4514eqcomi 2780 . . . . . . . . . 10 (Scalar‘𝑊) = 𝐹
4645fveq2i 6335 . . . . . . . . 9 (Base‘(Scalar‘𝑊)) = (Base‘𝐹)
4731, 46mgpbas 18703 . . . . . . . 8 (Base‘(Scalar‘𝑊)) = (Base‘𝐺)
48 assamulgscm.p . . . . . . . 8 = (.g𝐺)
4947, 48mulgnn0cl 17766 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐴 ∈ (Base‘(Scalar‘𝑊))) → (𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)))
5035, 36, 44, 49syl3anc 1476 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)))
51 simprlr 765 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑋𝑉)
5221, 22mulgnn0cl 17766 . . . . . . 7 ((𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝑉) → (𝑦𝐸𝑋) ∈ 𝑉)
536, 36, 51, 52syl3anc 1476 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝑦𝐸𝑋) ∈ 𝑉)
54 eqid 2771 . . . . . . 7 (Scalar‘𝑊) = (Scalar‘𝑊)
55 eqid 2771 . . . . . . 7 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
5613, 54, 55, 15, 23assaass 19532 . . . . . 6 ((𝑊 ∈ AssAlg ∧ ((𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑦𝐸𝑋) ∈ 𝑉 ∧ (𝐴 · 𝑋) ∈ 𝑉)) → (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)) = ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))))
5728, 50, 53, 19, 56syl13anc 1478 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)) = ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))))
5813, 54, 55, 15, 23assaassr 19533 . . . . . . . 8 ((𝑊 ∈ AssAlg ∧ (𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑦𝐸𝑋) ∈ 𝑉𝑋𝑉)) → ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋)) = (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋)))
5928, 44, 53, 51, 58syl13anc 1478 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋)) = (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋)))
6059oveq2d 6809 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))) = ((𝑦 𝐴) · (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋))))
6121, 22, 24mulgnn0p1 17760 . . . . . . . . . 10 ((𝐻 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝑉) → ((𝑦 + 1)𝐸𝑋) = ((𝑦𝐸𝑋)(.r𝑊)𝑋))
626, 36, 51, 61syl3anc 1476 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1)𝐸𝑋) = ((𝑦𝐸𝑋)(.r𝑊)𝑋))
6362eqcomd 2777 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦𝐸𝑋)(.r𝑊)𝑋) = ((𝑦 + 1)𝐸𝑋))
6463oveq2d 6809 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋)) = (𝐴 · ((𝑦 + 1)𝐸𝑋)))
6564oveq2d 6809 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · (𝐴 · ((𝑦𝐸𝑋)(.r𝑊)𝑋))) = ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))))
6610adantl 467 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝑊 ∈ LMod)
67 peano2nn0 11535 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ0)
6867adantr 466 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (𝑦 + 1) ∈ ℕ0)
6921, 22mulgnn0cl 17766 . . . . . . . 8 ((𝐻 ∈ Mnd ∧ (𝑦 + 1) ∈ ℕ0𝑋𝑉) → ((𝑦 + 1)𝐸𝑋) ∈ 𝑉)
706, 68, 51, 69syl3anc 1476 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1)𝐸𝑋) ∈ 𝑉)
71 eqid 2771 . . . . . . . . 9 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
7213, 54, 15, 55, 71lmodvsass 19098 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑦 + 1)𝐸𝑋) ∈ 𝑉)) → (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)) = ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))))
7372eqcomd 2777 . . . . . . 7 ((𝑊 ∈ LMod ∧ ((𝑦 𝐴) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝐴 ∈ (Base‘(Scalar‘𝑊)) ∧ ((𝑦 + 1)𝐸𝑋) ∈ 𝑉)) → ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))) = (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)))
7466, 50, 44, 70, 73syl13anc 1478 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · (𝐴 · ((𝑦 + 1)𝐸𝑋))) = (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)))
7560, 65, 743eqtrd 2809 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴) · ((𝑦𝐸𝑋)(.r𝑊)(𝐴 · 𝑋))) = (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)))
76 simprll 764 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐴𝐵)
7731, 16mgpbas 18703 . . . . . . . . . 10 𝐵 = (Base‘𝐺)
78 eqid 2771 . . . . . . . . . . 11 (.r𝐹) = (.r𝐹)
7931, 78mgpplusg 18701 . . . . . . . . . 10 (.r𝐹) = (+g𝐺)
8077, 48, 79mulgnn0p1 17760 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑦 ∈ ℕ0𝐴𝐵) → ((𝑦 + 1) 𝐴) = ((𝑦 𝐴)(.r𝐹)𝐴))
8135, 36, 76, 80syl3anc 1476 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1) 𝐴) = ((𝑦 𝐴)(.r𝐹)𝐴))
8214a1i 11 . . . . . . . . . 10 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → 𝐹 = (Scalar‘𝑊))
8382fveq2d 6336 . . . . . . . . 9 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (.r𝐹) = (.r‘(Scalar‘𝑊)))
8483oveqd 6810 . . . . . . . 8 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴)(.r𝐹)𝐴) = ((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴))
8581, 84eqtrd 2805 . . . . . . 7 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 + 1) 𝐴) = ((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴))
8685eqcomd 2777 . . . . . 6 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → ((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) = ((𝑦 + 1) 𝐴))
8786oveq1d 6808 . . . . 5 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (((𝑦 𝐴)(.r‘(Scalar‘𝑊))𝐴) · ((𝑦 + 1)𝐸𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
8857, 75, 873eqtrd 2809 . . . 4 ((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) → (((𝑦 𝐴) · (𝑦𝐸𝑋))(.r𝑊)(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
8927, 88sylan9eqr 2827 . . 3 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → ((𝑦𝐸(𝐴 · 𝑋))(.r𝑊)(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
9026, 89eqtrd 2805 . 2 (((𝑦 ∈ ℕ0 ∧ ((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg)) ∧ (𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋))) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))
9190exp31 406 1 (𝑦 ∈ ℕ0 → (((𝐴𝐵𝑋𝑉) ∧ 𝑊 ∈ AssAlg) → ((𝑦𝐸(𝐴 · 𝑋)) = ((𝑦 𝐴) · (𝑦𝐸𝑋)) → ((𝑦 + 1)𝐸(𝐴 · 𝑋)) = (((𝑦 + 1) 𝐴) · ((𝑦 + 1)𝐸𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  cfv 6031  (class class class)co 6793  1c1 10139   + caddc 10141  0cn0 11494  Basecbs 16064  .rcmulr 16150  Scalarcsca 16152   ·𝑠 cvsca 16153  Mndcmnd 17502  .gcmg 17748  mulGrpcmgp 18697  Ringcrg 18755  CRingccrg 18756  LModclmod 19073  AssAlgcasa 19524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-seq 13009  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-plusg 16162  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mulg 17749  df-mgp 18698  df-ring 18757  df-cring 18758  df-lmod 19075  df-assa 19527
This theorem is referenced by:  assamulgscm  19565
  Copyright terms: Public domain W3C validator