MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aspval Structured version   Visualization version   GIF version

Theorem aspval 19542
Description: Value of the algebraic closure operation inside an associative algebra. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
aspval.a 𝐴 = (AlgSpan‘𝑊)
aspval.v 𝑉 = (Base‘𝑊)
aspval.l 𝐿 = (LSubSp‘𝑊)
Assertion
Ref Expression
aspval ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
Distinct variable groups:   𝑡,𝐿   𝑡,𝑆   𝑡,𝑉   𝑡,𝑊
Allowed substitution hint:   𝐴(𝑡)

Proof of Theorem aspval
Dummy variables 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 aspval.a . . . . 5 𝐴 = (AlgSpan‘𝑊)
2 fveq2 6332 . . . . . . . . 9 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
3 aspval.v . . . . . . . . 9 𝑉 = (Base‘𝑊)
42, 3syl6eqr 2822 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = 𝑉)
54pweqd 4300 . . . . . . 7 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 𝑉)
6 fveq2 6332 . . . . . . . . . 10 (𝑤 = 𝑊 → (SubRing‘𝑤) = (SubRing‘𝑊))
7 fveq2 6332 . . . . . . . . . . 11 (𝑤 = 𝑊 → (LSubSp‘𝑤) = (LSubSp‘𝑊))
8 aspval.l . . . . . . . . . . 11 𝐿 = (LSubSp‘𝑊)
97, 8syl6eqr 2822 . . . . . . . . . 10 (𝑤 = 𝑊 → (LSubSp‘𝑤) = 𝐿)
106, 9ineq12d 3964 . . . . . . . . 9 (𝑤 = 𝑊 → ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) = ((SubRing‘𝑊) ∩ 𝐿))
11 rabeq 3341 . . . . . . . . 9 (((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) = ((SubRing‘𝑊) ∩ 𝐿) → {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})
1210, 11syl 17 . . . . . . . 8 (𝑤 = 𝑊 → {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})
1312inteqd 4614 . . . . . . 7 (𝑤 = 𝑊 {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})
145, 13mpteq12dv 4865 . . . . . 6 (𝑤 = 𝑊 → (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}))
15 df-asp 19527 . . . . . 6 AlgSpan = (𝑤 ∈ AssAlg ↦ (𝑠 ∈ 𝒫 (Base‘𝑤) ↦ {𝑡 ∈ ((SubRing‘𝑤) ∩ (LSubSp‘𝑤)) ∣ 𝑠𝑡}))
16 fvex 6342 . . . . . . . . 9 (Base‘𝑊) ∈ V
173, 16eqeltri 2845 . . . . . . . 8 𝑉 ∈ V
1817pwex 4976 . . . . . . 7 𝒫 𝑉 ∈ V
1918mptex 6629 . . . . . 6 (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}) ∈ V
2014, 15, 19fvmpt 6424 . . . . 5 (𝑊 ∈ AssAlg → (AlgSpan‘𝑊) = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}))
211, 20syl5eq 2816 . . . 4 (𝑊 ∈ AssAlg → 𝐴 = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}))
2221fveq1d 6334 . . 3 (𝑊 ∈ AssAlg → (𝐴𝑆) = ((𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})‘𝑆))
2322adantr 466 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = ((𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})‘𝑆))
24 simpr 471 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → 𝑆𝑉)
2517elpw2 4956 . . . 4 (𝑆 ∈ 𝒫 𝑉𝑆𝑉)
2624, 25sylibr 224 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → 𝑆 ∈ 𝒫 𝑉)
27 assaring 19534 . . . . . . 7 (𝑊 ∈ AssAlg → 𝑊 ∈ Ring)
283subrgid 18991 . . . . . . 7 (𝑊 ∈ Ring → 𝑉 ∈ (SubRing‘𝑊))
2927, 28syl 17 . . . . . 6 (𝑊 ∈ AssAlg → 𝑉 ∈ (SubRing‘𝑊))
30 assalmod 19533 . . . . . . 7 (𝑊 ∈ AssAlg → 𝑊 ∈ LMod)
313, 8lss1 19148 . . . . . . 7 (𝑊 ∈ LMod → 𝑉𝐿)
3230, 31syl 17 . . . . . 6 (𝑊 ∈ AssAlg → 𝑉𝐿)
3329, 32elind 3947 . . . . 5 (𝑊 ∈ AssAlg → 𝑉 ∈ ((SubRing‘𝑊) ∩ 𝐿))
34 sseq2 3774 . . . . . 6 (𝑡 = 𝑉 → (𝑆𝑡𝑆𝑉))
3534rspcev 3458 . . . . 5 ((𝑉 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∧ 𝑆𝑉) → ∃𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿)𝑆𝑡)
3633, 35sylan 561 . . . 4 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → ∃𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿)𝑆𝑡)
37 intexrab 4951 . . . 4 (∃𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿)𝑆𝑡 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ∈ V)
3836, 37sylib 208 . . 3 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ∈ V)
39 sseq1 3773 . . . . . 6 (𝑠 = 𝑆 → (𝑠𝑡𝑆𝑡))
4039rabbidv 3338 . . . . 5 (𝑠 = 𝑆 → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
4140inteqd 4614 . . . 4 (𝑠 = 𝑆 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡} = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
42 eqid 2770 . . . 4 (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡}) = (𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})
4341, 42fvmptg 6422 . . 3 ((𝑆 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡} ∈ V) → ((𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})‘𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
4426, 38, 43syl2anc 565 . 2 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → ((𝑠 ∈ 𝒫 𝑉 {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑠𝑡})‘𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
4523, 44eqtrd 2804 1 ((𝑊 ∈ AssAlg ∧ 𝑆𝑉) → (𝐴𝑆) = {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆𝑡})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1630  wcel 2144  wrex 3061  {crab 3064  Vcvv 3349  cin 3720  wss 3721  𝒫 cpw 4295   cint 4609  cmpt 4861  cfv 6031  Basecbs 16063  Ringcrg 18754  SubRingcsubrg 18985  LModclmod 19072  LSubSpclss 19141  AssAlgcasa 19523  AlgSpancasp 19524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-mgp 18697  df-ur 18709  df-ring 18756  df-subrg 18987  df-lmod 19074  df-lss 19142  df-assa 19526  df-asp 19527
This theorem is referenced by:  asplss  19543  aspid  19544  aspsubrg  19545  aspss  19546  aspssid  19547  aspval2  19561
  Copyright terms: Public domain W3C validator