![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > asplss | Structured version Visualization version GIF version |
Description: The algebraic span of a set of vectors is a vector subspace. (Contributed by Mario Carneiro, 7-Jan-2015.) |
Ref | Expression |
---|---|
aspval.a | ⊢ 𝐴 = (AlgSpan‘𝑊) |
aspval.v | ⊢ 𝑉 = (Base‘𝑊) |
aspval.l | ⊢ 𝐿 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
asplss | ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) ∈ 𝐿) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | aspval.a | . . 3 ⊢ 𝐴 = (AlgSpan‘𝑊) | |
2 | aspval.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | aspval.l | . . 3 ⊢ 𝐿 = (LSubSp‘𝑊) | |
4 | 1, 2, 3 | aspval 19522 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) = ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡}) |
5 | assalmod 19513 | . . . 4 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ LMod) | |
6 | 5 | adantr 472 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → 𝑊 ∈ LMod) |
7 | ssrab2 3820 | . . . . 5 ⊢ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ⊆ ((SubRing‘𝑊) ∩ 𝐿) | |
8 | inss2 3969 | . . . . 5 ⊢ ((SubRing‘𝑊) ∩ 𝐿) ⊆ 𝐿 | |
9 | 7, 8 | sstri 3745 | . . . 4 ⊢ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ⊆ 𝐿 |
10 | 9 | a1i 11 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ⊆ 𝐿) |
11 | fvex 6354 | . . . . 5 ⊢ (𝐴‘𝑆) ∈ V | |
12 | 4, 11 | syl6eqelr 2840 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ∈ V) |
13 | intex 4961 | . . . 4 ⊢ ({𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ≠ ∅ ↔ ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ∈ V) | |
14 | 12, 13 | sylibr 224 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ≠ ∅) |
15 | 3 | lssintcl 19158 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ⊆ 𝐿 ∧ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ≠ ∅) → ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ∈ 𝐿) |
16 | 6, 10, 14, 15 | syl3anc 1473 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → ∩ {𝑡 ∈ ((SubRing‘𝑊) ∩ 𝐿) ∣ 𝑆 ⊆ 𝑡} ∈ 𝐿) |
17 | 4, 16 | eqeltrd 2831 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑆 ⊆ 𝑉) → (𝐴‘𝑆) ∈ 𝐿) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ≠ wne 2924 {crab 3046 Vcvv 3332 ∩ cin 3706 ⊆ wss 3707 ∅c0 4050 ∩ cint 4619 ‘cfv 6041 Basecbs 16051 SubRingcsubrg 18970 LModclmod 19057 LSubSpclss 19126 AssAlgcasa 19503 AlgSpancasp 19504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-2 11263 df-ndx 16054 df-slot 16055 df-base 16057 df-sets 16058 df-ress 16059 df-plusg 16148 df-0g 16296 df-mgm 17435 df-sgrp 17477 df-mnd 17488 df-grp 17618 df-minusg 17619 df-sbg 17620 df-mgp 18682 df-ur 18694 df-ring 18741 df-subrg 18972 df-lmod 19059 df-lss 19127 df-assa 19506 df-asp 19507 |
This theorem is referenced by: mplbas2 19664 |
Copyright terms: Public domain | W3C validator |