![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > asinbnd | Structured version Visualization version GIF version |
Description: The arcsine function has range within a vertical strip of the complex plane with real part between -π / 2 and π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
Ref | Expression |
---|---|
asinbnd | ⊢ (𝐴 ∈ ℂ → (ℜ‘(arcsin‘𝐴)) ∈ (-(π / 2)[,](π / 2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asinval 24829 | . . . 4 ⊢ (𝐴 ∈ ℂ → (arcsin‘𝐴) = (-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) | |
2 | 1 | fveq2d 6336 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℜ‘(arcsin‘𝐴)) = (ℜ‘(-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))) |
3 | ax-icn 10196 | . . . . . . 7 ⊢ i ∈ ℂ | |
4 | mulcl 10221 | . . . . . . 7 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
5 | 3, 4 | mpan 662 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
6 | ax-1cn 10195 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
7 | sqcl 13131 | . . . . . . . 8 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
8 | subcl 10481 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → (1 − (𝐴↑2)) ∈ ℂ) | |
9 | 6, 7, 8 | sylancr 567 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → (1 − (𝐴↑2)) ∈ ℂ) |
10 | 9 | sqrtcld 14383 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (√‘(1 − (𝐴↑2))) ∈ ℂ) |
11 | 5, 10 | addcld 10260 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ) |
12 | asinlem 24815 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0) | |
13 | 11, 12 | logcld 24537 | . . . 4 ⊢ (𝐴 ∈ ℂ → (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ) |
14 | imre 14055 | . . . 4 ⊢ ((log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))) ∈ ℂ → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = (ℜ‘(-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))) | |
15 | 13, 14 | syl 17 | . . 3 ⊢ (𝐴 ∈ ℂ → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) = (ℜ‘(-i · (log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))))) |
16 | 2, 15 | eqtr4d 2807 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘(arcsin‘𝐴)) = (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2))))))) |
17 | asinlem3 24818 | . . 3 ⊢ (𝐴 ∈ ℂ → 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) | |
18 | argrege0 24577 | . . 3 ⊢ ((((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ∈ ℂ ∧ ((i · 𝐴) + (√‘(1 − (𝐴↑2)))) ≠ 0 ∧ 0 ≤ (ℜ‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-(π / 2)[,](π / 2))) | |
19 | 11, 12, 17, 18 | syl3anc 1475 | . 2 ⊢ (𝐴 ∈ ℂ → (ℑ‘(log‘((i · 𝐴) + (√‘(1 − (𝐴↑2)))))) ∈ (-(π / 2)[,](π / 2))) |
20 | 16, 19 | eqeltrd 2849 | 1 ⊢ (𝐴 ∈ ℂ → (ℜ‘(arcsin‘𝐴)) ∈ (-(π / 2)[,](π / 2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 ≠ wne 2942 class class class wbr 4784 ‘cfv 6031 (class class class)co 6792 ℂcc 10135 0cc0 10137 1c1 10138 ici 10139 + caddc 10140 · cmul 10142 ≤ cle 10276 − cmin 10467 -cneg 10468 / cdiv 10885 2c2 11271 [,]cicc 12382 ↑cexp 13066 ℜcre 14044 ℑcim 14045 √csqrt 14180 πcpi 15002 logclog 24521 arcsincasin 24809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 ax-addf 10216 ax-mulf 10217 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-iin 4655 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-supp 7446 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-ixp 8062 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-fsupp 8431 df-fi 8472 df-sup 8503 df-inf 8504 df-oi 8570 df-card 8964 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-5 11283 df-6 11284 df-7 11285 df-8 11286 df-9 11287 df-n0 11494 df-z 11579 df-dec 11695 df-uz 11888 df-q 11991 df-rp 12035 df-xneg 12150 df-xadd 12151 df-xmul 12152 df-ioo 12383 df-ioc 12384 df-ico 12385 df-icc 12386 df-fz 12533 df-fzo 12673 df-fl 12800 df-mod 12876 df-seq 13008 df-exp 13067 df-fac 13264 df-bc 13293 df-hash 13321 df-shft 14014 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-limsup 14409 df-clim 14426 df-rlim 14427 df-sum 14624 df-ef 15003 df-sin 15005 df-cos 15006 df-pi 15008 df-struct 16065 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-ress 16071 df-plusg 16161 df-mulr 16162 df-starv 16163 df-sca 16164 df-vsca 16165 df-ip 16166 df-tset 16167 df-ple 16168 df-ds 16171 df-unif 16172 df-hom 16173 df-cco 16174 df-rest 16290 df-topn 16291 df-0g 16309 df-gsum 16310 df-topgen 16311 df-pt 16312 df-prds 16315 df-xrs 16369 df-qtop 16374 df-imas 16375 df-xps 16377 df-mre 16453 df-mrc 16454 df-acs 16456 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-submnd 17543 df-mulg 17748 df-cntz 17956 df-cmn 18401 df-psmet 19952 df-xmet 19953 df-met 19954 df-bl 19955 df-mopn 19956 df-fbas 19957 df-fg 19958 df-cnfld 19961 df-top 20918 df-topon 20935 df-topsp 20957 df-bases 20970 df-cld 21043 df-ntr 21044 df-cls 21045 df-nei 21122 df-lp 21160 df-perf 21161 df-cn 21251 df-cnp 21252 df-haus 21339 df-tx 21585 df-hmeo 21778 df-fil 21869 df-fm 21961 df-flim 21962 df-flf 21963 df-xms 22344 df-ms 22345 df-tms 22346 df-cncf 22900 df-limc 23849 df-dv 23850 df-log 24523 df-asin 24812 |
This theorem is referenced by: acosbnd 24847 |
Copyright terms: Public domain | W3C validator |