![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > asin1 | Structured version Visualization version GIF version |
Description: The arcsine of 1 is π / 2. (Contributed by Mario Carneiro, 2-Apr-2015.) |
Ref | Expression |
---|---|
asin1 | ⊢ (arcsin‘1) = (π / 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1cn 10196 | . . 3 ⊢ 1 ∈ ℂ | |
2 | asinval 24830 | . . 3 ⊢ (1 ∈ ℂ → (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2))))))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (arcsin‘1) = (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))) |
4 | ax-icn 10197 | . . . . . . 7 ⊢ i ∈ ℂ | |
5 | 4 | addid1i 10425 | . . . . . 6 ⊢ (i + 0) = i |
6 | 4 | mulid1i 10244 | . . . . . . 7 ⊢ (i · 1) = i |
7 | sq1 13165 | . . . . . . . . . . 11 ⊢ (1↑2) = 1 | |
8 | 7 | oveq2i 6804 | . . . . . . . . . 10 ⊢ (1 − (1↑2)) = (1 − 1) |
9 | 1m1e0 11291 | . . . . . . . . . 10 ⊢ (1 − 1) = 0 | |
10 | 8, 9 | eqtri 2793 | . . . . . . . . 9 ⊢ (1 − (1↑2)) = 0 |
11 | 10 | fveq2i 6335 | . . . . . . . 8 ⊢ (√‘(1 − (1↑2))) = (√‘0) |
12 | sqrt0 14190 | . . . . . . . 8 ⊢ (√‘0) = 0 | |
13 | 11, 12 | eqtri 2793 | . . . . . . 7 ⊢ (√‘(1 − (1↑2))) = 0 |
14 | 6, 13 | oveq12i 6805 | . . . . . 6 ⊢ ((i · 1) + (√‘(1 − (1↑2)))) = (i + 0) |
15 | efhalfpi 24444 | . . . . . 6 ⊢ (exp‘(i · (π / 2))) = i | |
16 | 5, 14, 15 | 3eqtr4i 2803 | . . . . 5 ⊢ ((i · 1) + (√‘(1 − (1↑2)))) = (exp‘(i · (π / 2))) |
17 | 16 | fveq2i 6335 | . . . 4 ⊢ (log‘((i · 1) + (√‘(1 − (1↑2))))) = (log‘(exp‘(i · (π / 2)))) |
18 | halfpire 24437 | . . . . . . . 8 ⊢ (π / 2) ∈ ℝ | |
19 | 18 | recni 10254 | . . . . . . 7 ⊢ (π / 2) ∈ ℂ |
20 | 4, 19 | mulcli 10247 | . . . . . 6 ⊢ (i · (π / 2)) ∈ ℂ |
21 | pipos 24433 | . . . . . . . . 9 ⊢ 0 < π | |
22 | pire 24431 | . . . . . . . . . 10 ⊢ π ∈ ℝ | |
23 | lt0neg2 10737 | . . . . . . . . . 10 ⊢ (π ∈ ℝ → (0 < π ↔ -π < 0)) | |
24 | 22, 23 | ax-mp 5 | . . . . . . . . 9 ⊢ (0 < π ↔ -π < 0) |
25 | 21, 24 | mpbi 220 | . . . . . . . 8 ⊢ -π < 0 |
26 | pirp 24434 | . . . . . . . . . 10 ⊢ π ∈ ℝ+ | |
27 | rphalfcl 12061 | . . . . . . . . . 10 ⊢ (π ∈ ℝ+ → (π / 2) ∈ ℝ+) | |
28 | 26, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ (π / 2) ∈ ℝ+ |
29 | rpgt0 12047 | . . . . . . . . 9 ⊢ ((π / 2) ∈ ℝ+ → 0 < (π / 2)) | |
30 | 28, 29 | ax-mp 5 | . . . . . . . 8 ⊢ 0 < (π / 2) |
31 | 22 | renegcli 10544 | . . . . . . . . 9 ⊢ -π ∈ ℝ |
32 | 0re 10242 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
33 | 31, 32, 18 | lttri 10365 | . . . . . . . 8 ⊢ ((-π < 0 ∧ 0 < (π / 2)) → -π < (π / 2)) |
34 | 25, 30, 33 | mp2an 672 | . . . . . . 7 ⊢ -π < (π / 2) |
35 | 20 | addid2i 10426 | . . . . . . . . 9 ⊢ (0 + (i · (π / 2))) = (i · (π / 2)) |
36 | 35 | fveq2i 6335 | . . . . . . . 8 ⊢ (ℑ‘(0 + (i · (π / 2)))) = (ℑ‘(i · (π / 2))) |
37 | 32, 18 | crimi 14141 | . . . . . . . 8 ⊢ (ℑ‘(0 + (i · (π / 2)))) = (π / 2) |
38 | 36, 37 | eqtr3i 2795 | . . . . . . 7 ⊢ (ℑ‘(i · (π / 2))) = (π / 2) |
39 | 34, 38 | breqtrri 4813 | . . . . . 6 ⊢ -π < (ℑ‘(i · (π / 2))) |
40 | rphalflt 12063 | . . . . . . . . 9 ⊢ (π ∈ ℝ+ → (π / 2) < π) | |
41 | 26, 40 | ax-mp 5 | . . . . . . . 8 ⊢ (π / 2) < π |
42 | 18, 22, 41 | ltleii 10362 | . . . . . . 7 ⊢ (π / 2) ≤ π |
43 | 38, 42 | eqbrtri 4807 | . . . . . 6 ⊢ (ℑ‘(i · (π / 2))) ≤ π |
44 | ellogrn 24527 | . . . . . 6 ⊢ ((i · (π / 2)) ∈ ran log ↔ ((i · (π / 2)) ∈ ℂ ∧ -π < (ℑ‘(i · (π / 2))) ∧ (ℑ‘(i · (π / 2))) ≤ π)) | |
45 | 20, 39, 43, 44 | mpbir3an 1426 | . . . . 5 ⊢ (i · (π / 2)) ∈ ran log |
46 | logef 24549 | . . . . 5 ⊢ ((i · (π / 2)) ∈ ran log → (log‘(exp‘(i · (π / 2)))) = (i · (π / 2))) | |
47 | 45, 46 | ax-mp 5 | . . . 4 ⊢ (log‘(exp‘(i · (π / 2)))) = (i · (π / 2)) |
48 | 17, 47 | eqtri 2793 | . . 3 ⊢ (log‘((i · 1) + (√‘(1 − (1↑2))))) = (i · (π / 2)) |
49 | 48 | oveq2i 6804 | . 2 ⊢ (-i · (log‘((i · 1) + (√‘(1 − (1↑2)))))) = (-i · (i · (π / 2))) |
50 | 4, 4 | mulneg1i 10678 | . . . . . 6 ⊢ (-i · i) = -(i · i) |
51 | ixi 10858 | . . . . . . 7 ⊢ (i · i) = -1 | |
52 | 51 | negeqi 10476 | . . . . . 6 ⊢ -(i · i) = --1 |
53 | negneg1e1 11330 | . . . . . 6 ⊢ --1 = 1 | |
54 | 50, 52, 53 | 3eqtri 2797 | . . . . 5 ⊢ (-i · i) = 1 |
55 | 54 | oveq1i 6803 | . . . 4 ⊢ ((-i · i) · (π / 2)) = (1 · (π / 2)) |
56 | negicn 10484 | . . . . 5 ⊢ -i ∈ ℂ | |
57 | 56, 4, 19 | mulassi 10251 | . . . 4 ⊢ ((-i · i) · (π / 2)) = (-i · (i · (π / 2))) |
58 | 55, 57 | eqtr3i 2795 | . . 3 ⊢ (1 · (π / 2)) = (-i · (i · (π / 2))) |
59 | 19 | mulid2i 10245 | . . 3 ⊢ (1 · (π / 2)) = (π / 2) |
60 | 58, 59 | eqtr3i 2795 | . 2 ⊢ (-i · (i · (π / 2))) = (π / 2) |
61 | 3, 49, 60 | 3eqtri 2797 | 1 ⊢ (arcsin‘1) = (π / 2) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1631 ∈ wcel 2145 class class class wbr 4786 ran crn 5250 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 ℝcr 10137 0cc0 10138 1c1 10139 ici 10140 + caddc 10141 · cmul 10143 < clt 10276 ≤ cle 10277 − cmin 10468 -cneg 10469 / cdiv 10886 2c2 11272 ℝ+crp 12035 ↑cexp 13067 ℑcim 14046 √csqrt 14181 expce 14998 πcpi 15003 logclog 24522 arcsincasin 24810 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-inf2 8702 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 ax-addf 10217 ax-mulf 10218 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-om 7213 df-1st 7315 df-2nd 7316 df-supp 7447 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-2o 7714 df-oadd 7717 df-er 7896 df-map 8011 df-pm 8012 df-ixp 8063 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fsupp 8432 df-fi 8473 df-sup 8504 df-inf 8505 df-oi 8571 df-card 8965 df-cda 9192 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-q 11992 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-ioo 12384 df-ioc 12385 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-fac 13265 df-bc 13294 df-hash 13322 df-shft 14015 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-limsup 14410 df-clim 14427 df-rlim 14428 df-sum 14625 df-ef 15004 df-sin 15006 df-cos 15007 df-pi 15009 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-starv 16164 df-sca 16165 df-vsca 16166 df-ip 16167 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-hom 16174 df-cco 16175 df-rest 16291 df-topn 16292 df-0g 16310 df-gsum 16311 df-topgen 16312 df-pt 16313 df-prds 16316 df-xrs 16370 df-qtop 16375 df-imas 16376 df-xps 16378 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-mulg 17749 df-cntz 17957 df-cmn 18402 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-fbas 19958 df-fg 19959 df-cnfld 19962 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cld 21044 df-ntr 21045 df-cls 21046 df-nei 21123 df-lp 21161 df-perf 21162 df-cn 21252 df-cnp 21253 df-haus 21340 df-tx 21586 df-hmeo 21779 df-fil 21870 df-fm 21962 df-flim 21963 df-flf 21964 df-xms 22345 df-ms 22346 df-tms 22347 df-cncf 22901 df-limc 23850 df-dv 23851 df-log 24524 df-asin 24813 |
This theorem is referenced by: acos1 24843 reasinsin 24844 areacirc 33837 |
Copyright terms: Public domain | W3C validator |