![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > asclghm | Structured version Visualization version GIF version |
Description: The algebra scalars function is a group homomorphism. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
asclf.a | ⊢ 𝐴 = (algSc‘𝑊) |
asclf.f | ⊢ 𝐹 = (Scalar‘𝑊) |
asclf.r | ⊢ (𝜑 → 𝑊 ∈ Ring) |
asclf.l | ⊢ (𝜑 → 𝑊 ∈ LMod) |
Ref | Expression |
---|---|
asclghm | ⊢ (𝜑 → 𝐴 ∈ (𝐹 GrpHom 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2771 | . 2 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
2 | eqid 2771 | . 2 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
3 | eqid 2771 | . 2 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
4 | eqid 2771 | . 2 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
5 | asclf.l | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
6 | asclf.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
7 | 6 | lmodring 19081 | . . . 4 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
8 | 5, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹 ∈ Ring) |
9 | ringgrp 18760 | . . 3 ⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 ∈ Grp) |
11 | asclf.r | . . 3 ⊢ (𝜑 → 𝑊 ∈ Ring) | |
12 | ringgrp 18760 | . . 3 ⊢ (𝑊 ∈ Ring → 𝑊 ∈ Grp) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → 𝑊 ∈ Grp) |
14 | asclf.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
15 | 14, 6, 11, 5, 1, 2 | asclf 19552 | . 2 ⊢ (𝜑 → 𝐴:(Base‘𝐹)⟶(Base‘𝑊)) |
16 | 5 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑊 ∈ LMod) |
17 | simprl 754 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑥 ∈ (Base‘𝐹)) | |
18 | simprr 756 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → 𝑦 ∈ (Base‘𝐹)) | |
19 | eqid 2771 | . . . . . . 7 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
20 | 2, 19 | ringidcl 18776 | . . . . . 6 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ (Base‘𝑊)) |
21 | 11, 20 | syl 17 | . . . . 5 ⊢ (𝜑 → (1r‘𝑊) ∈ (Base‘𝑊)) |
22 | 21 | adantr 466 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (1r‘𝑊) ∈ (Base‘𝑊)) |
23 | eqid 2771 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
24 | 2, 4, 6, 23, 1, 3 | lmodvsdir 19097 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹) ∧ (1r‘𝑊) ∈ (Base‘𝑊))) → ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
25 | 16, 17, 18, 22, 24 | syl13anc 1478 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
26 | 1, 3 | grpcl 17638 | . . . . . 6 ⊢ ((𝐹 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → (𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹)) |
27 | 26 | 3expb 1113 | . . . . 5 ⊢ ((𝐹 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹)) |
28 | 10, 27 | sylan 569 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹)) |
29 | 14, 6, 1, 23, 19 | asclval 19550 | . . . 4 ⊢ ((𝑥(+g‘𝐹)𝑦) ∈ (Base‘𝐹) → (𝐴‘(𝑥(+g‘𝐹)𝑦)) = ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
30 | 28, 29 | syl 17 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g‘𝐹)𝑦)) = ((𝑥(+g‘𝐹)𝑦)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
31 | 14, 6, 1, 23, 19 | asclval 19550 | . . . . 5 ⊢ (𝑥 ∈ (Base‘𝐹) → (𝐴‘𝑥) = (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))) |
32 | 14, 6, 1, 23, 19 | asclval 19550 | . . . . 5 ⊢ (𝑦 ∈ (Base‘𝐹) → (𝐴‘𝑦) = (𝑦( ·𝑠 ‘𝑊)(1r‘𝑊))) |
33 | 31, 32 | oveqan12d 6812 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹)) → ((𝐴‘𝑥)(+g‘𝑊)(𝐴‘𝑦)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
34 | 33 | adantl 467 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → ((𝐴‘𝑥)(+g‘𝑊)(𝐴‘𝑦)) = ((𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))(+g‘𝑊)(𝑦( ·𝑠 ‘𝑊)(1r‘𝑊)))) |
35 | 25, 30, 34 | 3eqtr4d 2815 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐹) ∧ 𝑦 ∈ (Base‘𝐹))) → (𝐴‘(𝑥(+g‘𝐹)𝑦)) = ((𝐴‘𝑥)(+g‘𝑊)(𝐴‘𝑦))) |
36 | 1, 2, 3, 4, 10, 13, 15, 35 | isghmd 17877 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐹 GrpHom 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ‘cfv 6031 (class class class)co 6793 Basecbs 16064 +gcplusg 16149 Scalarcsca 16152 ·𝑠 cvsca 16153 Grpcgrp 17630 GrpHom cghm 17865 1rcur 18709 Ringcrg 18755 LModclmod 19073 algSccascl 19526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-iun 4656 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-er 7896 df-en 8110 df-dom 8111 df-sdom 8112 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-plusg 16162 df-0g 16310 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-grp 17633 df-ghm 17866 df-mgp 18698 df-ur 18710 df-ring 18757 df-lmod 19075 df-ascl 19529 |
This theorem is referenced by: asclinvg 19556 asclrhm 19557 cpmatacl 20741 cpmatinvcl 20742 mat2pmatghm 20755 mat2pmatmul 20756 |
Copyright terms: Public domain | W3C validator |