![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ascl1 | Structured version Visualization version GIF version |
Description: The scalar 1 embedded into a left module corresponds to the 1 of the left module if the left module is also a ring. (Contributed by AV, 31-Jul-2019.) |
Ref | Expression |
---|---|
ascl0.a | ⊢ 𝐴 = (algSc‘𝑊) |
ascl0.f | ⊢ 𝐹 = (Scalar‘𝑊) |
ascl0.l | ⊢ (𝜑 → 𝑊 ∈ LMod) |
ascl0.r | ⊢ (𝜑 → 𝑊 ∈ Ring) |
Ref | Expression |
---|---|
ascl1 | ⊢ (𝜑 → (𝐴‘(1r‘𝐹)) = (1r‘𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ascl0.l | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | ascl0.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | 2 | lmodring 19080 | . . . . 5 ⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
4 | 1, 3 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ Ring) |
5 | eqid 2770 | . . . . 5 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
6 | eqid 2770 | . . . . 5 ⊢ (1r‘𝐹) = (1r‘𝐹) | |
7 | 5, 6 | ringidcl 18775 | . . . 4 ⊢ (𝐹 ∈ Ring → (1r‘𝐹) ∈ (Base‘𝐹)) |
8 | 4, 7 | syl 17 | . . 3 ⊢ (𝜑 → (1r‘𝐹) ∈ (Base‘𝐹)) |
9 | ascl0.a | . . . 4 ⊢ 𝐴 = (algSc‘𝑊) | |
10 | eqid 2770 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
11 | eqid 2770 | . . . 4 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
12 | 9, 2, 5, 10, 11 | asclval 19549 | . . 3 ⊢ ((1r‘𝐹) ∈ (Base‘𝐹) → (𝐴‘(1r‘𝐹)) = ((1r‘𝐹)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
13 | 8, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝐴‘(1r‘𝐹)) = ((1r‘𝐹)( ·𝑠 ‘𝑊)(1r‘𝑊))) |
14 | ascl0.r | . . . 4 ⊢ (𝜑 → 𝑊 ∈ Ring) | |
15 | eqid 2770 | . . . . 5 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
16 | 15, 11 | ringidcl 18775 | . . . 4 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ (Base‘𝑊)) |
17 | 14, 16 | syl 17 | . . 3 ⊢ (𝜑 → (1r‘𝑊) ∈ (Base‘𝑊)) |
18 | 15, 2, 10, 6 | lmodvs1 19100 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ (1r‘𝑊) ∈ (Base‘𝑊)) → ((1r‘𝐹)( ·𝑠 ‘𝑊)(1r‘𝑊)) = (1r‘𝑊)) |
19 | 1, 17, 18 | syl2anc 565 | . 2 ⊢ (𝜑 → ((1r‘𝐹)( ·𝑠 ‘𝑊)(1r‘𝑊)) = (1r‘𝑊)) |
20 | 13, 19 | eqtrd 2804 | 1 ⊢ (𝜑 → (𝐴‘(1r‘𝐹)) = (1r‘𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 ‘cfv 6031 (class class class)co 6792 Basecbs 16063 Scalarcsca 16151 ·𝑠 cvsca 16152 1rcur 18708 Ringcrg 18754 LModclmod 19072 algSccascl 19525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-ndx 16066 df-slot 16067 df-base 16069 df-sets 16070 df-plusg 16161 df-0g 16309 df-mgm 17449 df-sgrp 17491 df-mnd 17502 df-mgp 18697 df-ur 18709 df-ring 18756 df-lmod 19074 df-ascl 19528 |
This theorem is referenced by: assaascl1 42686 |
Copyright terms: Public domain | W3C validator |