![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > arwrid | Structured version Visualization version GIF version |
Description: Right identity of a category using arrow notation. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwlid.h | ⊢ 𝐻 = (Homa‘𝐶) |
arwlid.o | ⊢ · = (compa‘𝐶) |
arwlid.a | ⊢ 1 = (Ida‘𝐶) |
arwlid.f | ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) |
Ref | Expression |
---|---|
arwrid | ⊢ (𝜑 → (𝐹 · ( 1 ‘𝑋)) = 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | arwlid.a | . . . . . 6 ⊢ 1 = (Ida‘𝐶) | |
2 | eqid 2651 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
3 | arwlid.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐻𝑌)) | |
4 | arwlid.h | . . . . . . . 8 ⊢ 𝐻 = (Homa‘𝐶) | |
5 | 4 | homarcl 16725 | . . . . . . 7 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐶 ∈ Cat) |
6 | 3, 5 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ Cat) |
7 | eqid 2651 | . . . . . 6 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
8 | 4, 2 | homarcl2 16732 | . . . . . . . 8 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
9 | 3, 8 | syl 17 | . . . . . . 7 ⊢ (𝜑 → (𝑋 ∈ (Base‘𝐶) ∧ 𝑌 ∈ (Base‘𝐶))) |
10 | 9 | simpld 474 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐶)) |
11 | 1, 2, 6, 7, 10 | ida2 16756 | . . . . 5 ⊢ (𝜑 → (2nd ‘( 1 ‘𝑋)) = ((Id‘𝐶)‘𝑋)) |
12 | 11 | oveq2d 6706 | . . . 4 ⊢ (𝜑 → ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(2nd ‘( 1 ‘𝑋))) = ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋))) |
13 | eqid 2651 | . . . . 5 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
14 | eqid 2651 | . . . . 5 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
15 | 9 | simprd 478 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (Base‘𝐶)) |
16 | 4, 13 | homahom 16736 | . . . . . 6 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
17 | 3, 16 | syl 17 | . . . . 5 ⊢ (𝜑 → (2nd ‘𝐹) ∈ (𝑋(Hom ‘𝐶)𝑌)) |
18 | 2, 13, 7, 6, 10, 14, 15, 17 | catrid 16392 | . . . 4 ⊢ (𝜑 → ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)((Id‘𝐶)‘𝑋)) = (2nd ‘𝐹)) |
19 | 12, 18 | eqtrd 2685 | . . 3 ⊢ (𝜑 → ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(2nd ‘( 1 ‘𝑋))) = (2nd ‘𝐹)) |
20 | 19 | oteq3d 4447 | . 2 ⊢ (𝜑 → 〈𝑋, 𝑌, ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(2nd ‘( 1 ‘𝑋)))〉 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
21 | arwlid.o | . . 3 ⊢ · = (compa‘𝐶) | |
22 | 1, 2, 6, 10, 4 | idahom 16757 | . . 3 ⊢ (𝜑 → ( 1 ‘𝑋) ∈ (𝑋𝐻𝑋)) |
23 | 21, 4, 22, 3, 14 | coaval 16765 | . 2 ⊢ (𝜑 → (𝐹 · ( 1 ‘𝑋)) = 〈𝑋, 𝑌, ((2nd ‘𝐹)(〈𝑋, 𝑋〉(comp‘𝐶)𝑌)(2nd ‘( 1 ‘𝑋)))〉) |
24 | 4 | homadmcd 16739 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐻𝑌) → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
25 | 3, 24 | syl 17 | . 2 ⊢ (𝜑 → 𝐹 = 〈𝑋, 𝑌, (2nd ‘𝐹)〉) |
26 | 20, 23, 25 | 3eqtr4d 2695 | 1 ⊢ (𝜑 → (𝐹 · ( 1 ‘𝑋)) = 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 〈cop 4216 〈cotp 4218 ‘cfv 5926 (class class class)co 6690 2nd c2nd 7209 Basecbs 15904 Hom chom 15999 compcco 16000 Catccat 16372 Idccid 16373 Homachoma 16720 Idacida 16750 compaccoa 16751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-ot 4219 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-1st 7210 df-2nd 7211 df-cat 16376 df-cid 16377 df-doma 16721 df-coda 16722 df-homa 16723 df-arw 16724 df-ida 16752 df-coa 16753 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |