MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  argregt0 Structured version   Visualization version   GIF version

Theorem argregt0 24577
Description: Closure of the argument of a complex number with positive real part. (Contributed by Mario Carneiro, 25-Feb-2015.)
Assertion
Ref Expression
argregt0 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)))

Proof of Theorem argregt0
StepHypRef Expression
1 recl 14058 . . . . . 6 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
2 gt0ne0 10699 . . . . . 6 (((ℜ‘𝐴) ∈ ℝ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
31, 2sylan 569 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘𝐴) ≠ 0)
4 fveq2 6333 . . . . . . 7 (𝐴 = 0 → (ℜ‘𝐴) = (ℜ‘0))
5 re0 14100 . . . . . . 7 (ℜ‘0) = 0
64, 5syl6eq 2821 . . . . . 6 (𝐴 = 0 → (ℜ‘𝐴) = 0)
76necon3i 2975 . . . . 5 ((ℜ‘𝐴) ≠ 0 → 𝐴 ≠ 0)
83, 7syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 𝐴 ≠ 0)
9 logcl 24536 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
108, 9syldan 579 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (log‘𝐴) ∈ ℂ)
1110imcld 14143 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℝ)
12 coshalfpi 24442 . . . . . 6 (cos‘(π / 2)) = 0
13 simpr 471 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘𝐴))
14 abscl 14226 . . . . . . . . . . . . . 14 (𝐴 ∈ ℂ → (abs‘𝐴) ∈ ℝ)
1514adantr 466 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℝ)
1615recnd 10274 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℂ)
1716mul01d 10441 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · 0) = 0)
18 simpl 468 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 𝐴 ∈ ℂ)
19 absrpcl 14236 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (abs‘𝐴) ∈ ℝ+)
208, 19syldan 579 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ∈ ℝ+)
2120rpne0d 12080 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘𝐴) ≠ 0)
2218, 16, 21divcld 11007 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (𝐴 / (abs‘𝐴)) ∈ ℂ)
2315, 22remul2d 14175 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))))
2418, 16, 21divcan2d 11009 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · (𝐴 / (abs‘𝐴))) = 𝐴)
2524fveq2d 6337 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘((abs‘𝐴) · (𝐴 / (abs‘𝐴)))) = (ℜ‘𝐴))
2623, 25eqtr3d 2807 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))) = (ℜ‘𝐴))
2713, 17, 263brtr4d 4819 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴)))))
28 0re 10246 . . . . . . . . . . . 12 0 ∈ ℝ
2928a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 ∈ ℝ)
3022recld 14142 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(𝐴 / (abs‘𝐴))) ∈ ℝ)
3129, 30, 20ltmul2d 12117 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (0 < (ℜ‘(𝐴 / (abs‘𝐴))) ↔ ((abs‘𝐴) · 0) < ((abs‘𝐴) · (ℜ‘(𝐴 / (abs‘𝐴))))))
3227, 31mpbird 247 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(𝐴 / (abs‘𝐴))))
33 efiarg 24574 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
348, 33syldan 579 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (exp‘(i · (ℑ‘(log‘𝐴)))) = (𝐴 / (abs‘𝐴)))
3534fveq2d 6337 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))) = (ℜ‘(𝐴 / (abs‘𝐴))))
3632, 35breqtrrd 4815 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
37 recosval 15072 . . . . . . . . 9 ((ℑ‘(log‘𝐴)) ∈ ℝ → (cos‘(ℑ‘(log‘𝐴))) = (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3811, 37syl 17 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘(ℑ‘(log‘𝐴))) = (ℜ‘(exp‘(i · (ℑ‘(log‘𝐴))))))
3936, 38breqtrrd 4815 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (cos‘(ℑ‘(log‘𝐴))))
40 fveq2 6333 . . . . . . . . 9 ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))))
4140a1i 11 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴)))))
4211recnd 10274 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
43 cosneg 15083 . . . . . . . . . 10 ((ℑ‘(log‘𝐴)) ∈ ℂ → (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴))))
4442, 43syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴))))
45 fveq2 6333 . . . . . . . . . 10 ((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘-(ℑ‘(log‘𝐴))))
4645eqeq1d 2773 . . . . . . . . 9 ((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) → ((cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))) ↔ (cos‘-(ℑ‘(log‘𝐴))) = (cos‘(ℑ‘(log‘𝐴)))))
4744, 46syl5ibrcom 237 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴)))))
4811absord 14362 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) = (ℑ‘(log‘𝐴)) ∨ (abs‘(ℑ‘(log‘𝐴))) = -(ℑ‘(log‘𝐴))))
4941, 47, 48mpjaod 849 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘(abs‘(ℑ‘(log‘𝐴)))) = (cos‘(ℑ‘(log‘𝐴))))
5039, 49breqtrrd 4815 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 < (cos‘(abs‘(ℑ‘(log‘𝐴)))))
5112, 50syl5eqbr 4822 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (cos‘(π / 2)) < (cos‘(abs‘(ℑ‘(log‘𝐴)))))
52 abscl 14226 . . . . . . . 8 ((ℑ‘(log‘𝐴)) ∈ ℂ → (abs‘(ℑ‘(log‘𝐴))) ∈ ℝ)
5342, 52syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ∈ ℝ)
5442absge0d 14391 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → 0 ≤ (abs‘(ℑ‘(log‘𝐴))))
55 logimcl 24537 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
568, 55syldan 579 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
5756simpld 482 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → -π < (ℑ‘(log‘𝐴)))
58 pire 24431 . . . . . . . . . . 11 π ∈ ℝ
5958renegcli 10548 . . . . . . . . . 10 -π ∈ ℝ
60 ltle 10332 . . . . . . . . . 10 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
6159, 11, 60sylancr 575 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
6257, 61mpd 15 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴)))
6356simprd 483 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ≤ π)
64 absle 14263 . . . . . . . . 9 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ π ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
6511, 58, 64sylancl 574 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) ≤ π ↔ (-π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π)))
6662, 63, 65mpbir2and 692 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ≤ π)
6728, 58elicc2i 12444 . . . . . . 7 ((abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π) ↔ ((abs‘(ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ≤ (abs‘(ℑ‘(log‘𝐴))) ∧ (abs‘(ℑ‘(log‘𝐴))) ≤ π))
6853, 54, 66, 67syl3anbrc 1428 . . . . . 6 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π))
69 halfpire 24437 . . . . . . 7 (π / 2) ∈ ℝ
70 pirp 24434 . . . . . . . 8 π ∈ ℝ+
71 rphalfcl 12061 . . . . . . . 8 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
72 rpge0 12048 . . . . . . . 8 ((π / 2) ∈ ℝ+ → 0 ≤ (π / 2))
7370, 71, 72mp2b 10 . . . . . . 7 0 ≤ (π / 2)
74 rphalflt 12063 . . . . . . . . 9 (π ∈ ℝ+ → (π / 2) < π)
7570, 74ax-mp 5 . . . . . . . 8 (π / 2) < π
7669, 58, 75ltleii 10366 . . . . . . 7 (π / 2) ≤ π
7728, 58elicc2i 12444 . . . . . . 7 ((π / 2) ∈ (0[,]π) ↔ ((π / 2) ∈ ℝ ∧ 0 ≤ (π / 2) ∧ (π / 2) ≤ π))
7869, 73, 76, 77mpbir3an 1426 . . . . . 6 (π / 2) ∈ (0[,]π)
79 cosord 24499 . . . . . 6 (((abs‘(ℑ‘(log‘𝐴))) ∈ (0[,]π) ∧ (π / 2) ∈ (0[,]π)) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (cos‘(π / 2)) < (cos‘(abs‘(ℑ‘(log‘𝐴))))))
8068, 78, 79sylancl 574 . . . . 5 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (cos‘(π / 2)) < (cos‘(abs‘(ℑ‘(log‘𝐴))))))
8151, 80mpbird 247 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (abs‘(ℑ‘(log‘𝐴))) < (π / 2))
82 abslt 14262 . . . . 5 (((ℑ‘(log‘𝐴)) ∈ ℝ ∧ (π / 2) ∈ ℝ) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (-(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2))))
8311, 69, 82sylancl 574 . . . 4 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → ((abs‘(ℑ‘(log‘𝐴))) < (π / 2) ↔ (-(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2))))
8481, 83mpbid 222 . . 3 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (-(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2)))
8584simpld 482 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → -(π / 2) < (ℑ‘(log‘𝐴)))
8684simprd 483 . 2 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) < (π / 2))
8769renegcli 10548 . . . 4 -(π / 2) ∈ ℝ
8887rexri 10303 . . 3 -(π / 2) ∈ ℝ*
8969rexri 10303 . . 3 (π / 2) ∈ ℝ*
90 elioo2 12421 . . 3 ((-(π / 2) ∈ ℝ* ∧ (π / 2) ∈ ℝ*) → ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2))))
9188, 89, 90mp2an 672 . 2 ((ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -(π / 2) < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) < (π / 2)))
9211, 85, 86, 91syl3anbrc 1428 1 ((𝐴 ∈ ℂ ∧ 0 < (ℜ‘𝐴)) → (ℑ‘(log‘𝐴)) ∈ (-(π / 2)(,)(π / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943   class class class wbr 4787  cfv 6030  (class class class)co 6796  cc 10140  cr 10141  0cc0 10142  ici 10144   · cmul 10147  *cxr 10279   < clt 10280  cle 10281  -cneg 10473   / cdiv 10890  2c2 11276  +crp 12035  (,)cioo 12380  [,]cicc 12383  cre 14045  cim 14046  abscabs 14182  expce 14998  cosccos 15001  πcpi 15003  logclog 24522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-inf2 8706  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-addf 10221  ax-mulf 10222
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-iin 4658  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-of 7048  df-om 7217  df-1st 7319  df-2nd 7320  df-supp 7451  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-2o 7718  df-oadd 7721  df-er 7900  df-map 8015  df-pm 8016  df-ixp 8067  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-fsupp 8436  df-fi 8477  df-sup 8508  df-inf 8509  df-oi 8575  df-card 8969  df-cda 9196  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-4 11287  df-5 11288  df-6 11289  df-7 11290  df-8 11291  df-9 11292  df-n0 11500  df-z 11585  df-dec 11701  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851  df-log 24524
This theorem is referenced by:  logcnlem4  24612  atanlogsublem  24863
  Copyright terms: Public domain W3C validator