![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > areaf | Structured version Visualization version GIF version |
Description: Area measurement is a function whose values are nonnegative reals. (Contributed by Mario Carneiro, 21-Jun-2015.) |
Ref | Expression |
---|---|
areaf | ⊢ area:dom area⟶(0[,)+∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfarea 24908 | . 2 ⊢ area = (𝑠 ∈ dom area ↦ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) | |
2 | areambl 24906 | . . . . 5 ⊢ ((𝑠 ∈ dom area ∧ 𝑥 ∈ ℝ) → ((𝑠 “ {𝑥}) ∈ dom vol ∧ (vol‘(𝑠 “ {𝑥})) ∈ ℝ)) | |
3 | 2 | simprd 483 | . . . 4 ⊢ ((𝑠 ∈ dom area ∧ 𝑥 ∈ ℝ) → (vol‘(𝑠 “ {𝑥})) ∈ ℝ) |
4 | dmarea 24905 | . . . . 5 ⊢ (𝑠 ∈ dom area ↔ (𝑠 ⊆ (ℝ × ℝ) ∧ ∀𝑥 ∈ ℝ (𝑠 “ {𝑥}) ∈ (◡vol “ ℝ) ∧ (𝑥 ∈ ℝ ↦ (vol‘(𝑠 “ {𝑥}))) ∈ 𝐿1)) | |
5 | 4 | simp3bi 1141 | . . . 4 ⊢ (𝑠 ∈ dom area → (𝑥 ∈ ℝ ↦ (vol‘(𝑠 “ {𝑥}))) ∈ 𝐿1) |
6 | 3, 5 | itgrecl 23784 | . . 3 ⊢ (𝑠 ∈ dom area → ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥 ∈ ℝ) |
7 | 2 | simpld 482 | . . . . . 6 ⊢ ((𝑠 ∈ dom area ∧ 𝑥 ∈ ℝ) → (𝑠 “ {𝑥}) ∈ dom vol) |
8 | mblss 23519 | . . . . . 6 ⊢ ((𝑠 “ {𝑥}) ∈ dom vol → (𝑠 “ {𝑥}) ⊆ ℝ) | |
9 | ovolge0 23469 | . . . . . 6 ⊢ ((𝑠 “ {𝑥}) ⊆ ℝ → 0 ≤ (vol*‘(𝑠 “ {𝑥}))) | |
10 | 7, 8, 9 | 3syl 18 | . . . . 5 ⊢ ((𝑠 ∈ dom area ∧ 𝑥 ∈ ℝ) → 0 ≤ (vol*‘(𝑠 “ {𝑥}))) |
11 | mblvol 23518 | . . . . . 6 ⊢ ((𝑠 “ {𝑥}) ∈ dom vol → (vol‘(𝑠 “ {𝑥})) = (vol*‘(𝑠 “ {𝑥}))) | |
12 | 7, 11 | syl 17 | . . . . 5 ⊢ ((𝑠 ∈ dom area ∧ 𝑥 ∈ ℝ) → (vol‘(𝑠 “ {𝑥})) = (vol*‘(𝑠 “ {𝑥}))) |
13 | 10, 12 | breqtrrd 4815 | . . . 4 ⊢ ((𝑠 ∈ dom area ∧ 𝑥 ∈ ℝ) → 0 ≤ (vol‘(𝑠 “ {𝑥}))) |
14 | 5, 3, 13 | itgge0 23797 | . . 3 ⊢ (𝑠 ∈ dom area → 0 ≤ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥) |
15 | elrege0 12485 | . . 3 ⊢ (∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥 ∈ (0[,)+∞) ↔ (∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥 ∈ ℝ ∧ 0 ≤ ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥)) | |
16 | 6, 14, 15 | sylanbrc 572 | . 2 ⊢ (𝑠 ∈ dom area → ∫ℝ(vol‘(𝑠 “ {𝑥})) d𝑥 ∈ (0[,)+∞)) |
17 | 1, 16 | fmpti 6527 | 1 ⊢ area:dom area⟶(0[,)+∞) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∀wral 3061 ⊆ wss 3723 {csn 4317 class class class wbr 4787 ↦ cmpt 4864 × cxp 5248 ◡ccnv 5249 dom cdm 5250 “ cima 5253 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 ℝcr 10141 0cc0 10142 +∞cpnf 10277 ≤ cle 10281 [,)cico 12382 vol*covol 23450 volcvol 23451 𝐿1cibl 23605 ∫citg 23606 areacarea 24903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-inf2 8706 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 ax-addf 10221 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-disj 4756 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 df-ofr 7049 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-2o 7718 df-oadd 7721 df-er 7900 df-map 8015 df-pm 8016 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-sup 8508 df-inf 8509 df-oi 8575 df-card 8969 df-cda 9196 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-n0 11500 df-z 11585 df-uz 11894 df-q 11997 df-rp 12036 df-xadd 12152 df-ioo 12384 df-ico 12386 df-icc 12387 df-fz 12534 df-fzo 12674 df-fl 12801 df-mod 12877 df-seq 13009 df-exp 13068 df-hash 13322 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-clim 14427 df-sum 14625 df-xmet 19954 df-met 19955 df-ovol 23452 df-vol 23453 df-mbf 23607 df-itg1 23608 df-itg2 23609 df-ibl 23610 df-itg 23611 df-0p 23657 df-area 24904 |
This theorem is referenced by: areacl 24910 areage0 24911 |
Copyright terms: Public domain | W3C validator |