Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archirng Structured version   Visualization version   GIF version

Theorem archirng 29870
Description: Property of Archimedean ordered groups, framing positive 𝑌 between multiples of 𝑋. (Contributed by Thierry Arnoux, 12-Apr-2018.)
Hypotheses
Ref Expression
archirng.b 𝐵 = (Base‘𝑊)
archirng.0 0 = (0g𝑊)
archirng.i < = (lt‘𝑊)
archirng.l = (le‘𝑊)
archirng.x · = (.g𝑊)
archirng.1 (𝜑𝑊 ∈ oGrp)
archirng.2 (𝜑𝑊 ∈ Archi)
archirng.3 (𝜑𝑋𝐵)
archirng.4 (𝜑𝑌𝐵)
archirng.5 (𝜑0 < 𝑋)
archirng.6 (𝜑0 < 𝑌)
Assertion
Ref Expression
archirng (𝜑 → ∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
Distinct variable groups:   𝑛,𝑋   𝑛,𝑌   𝜑,𝑛   0 ,𝑛   ,𝑛   < ,𝑛   · ,𝑛
Allowed substitution hints:   𝐵(𝑛)   𝑊(𝑛)

Proof of Theorem archirng
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 6697 . . . 4 (𝑚 = 0 → (𝑚 · 𝑋) = (0 · 𝑋))
21breq2d 4697 . . 3 (𝑚 = 0 → (𝑌 (𝑚 · 𝑋) ↔ 𝑌 (0 · 𝑋)))
3 oveq1 6697 . . . 4 (𝑚 = 𝑛 → (𝑚 · 𝑋) = (𝑛 · 𝑋))
43breq2d 4697 . . 3 (𝑚 = 𝑛 → (𝑌 (𝑚 · 𝑋) ↔ 𝑌 (𝑛 · 𝑋)))
5 oveq1 6697 . . . 4 (𝑚 = (𝑛 + 1) → (𝑚 · 𝑋) = ((𝑛 + 1) · 𝑋))
65breq2d 4697 . . 3 (𝑚 = (𝑛 + 1) → (𝑌 (𝑚 · 𝑋) ↔ 𝑌 ((𝑛 + 1) · 𝑋)))
7 archirng.6 . . . . 5 (𝜑0 < 𝑌)
8 archirng.1 . . . . . . 7 (𝜑𝑊 ∈ oGrp)
9 isogrp 29830 . . . . . . . 8 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
109simprbi 479 . . . . . . 7 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
11 omndtos 29833 . . . . . . 7 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
128, 10, 113syl 18 . . . . . 6 (𝜑𝑊 ∈ Toset)
13 ogrpgrp 29831 . . . . . . . 8 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
148, 13syl 17 . . . . . . 7 (𝜑𝑊 ∈ Grp)
15 archirng.b . . . . . . . 8 𝐵 = (Base‘𝑊)
16 archirng.0 . . . . . . . 8 0 = (0g𝑊)
1715, 16grpidcl 17497 . . . . . . 7 (𝑊 ∈ Grp → 0𝐵)
1814, 17syl 17 . . . . . 6 (𝜑0𝐵)
19 archirng.4 . . . . . 6 (𝜑𝑌𝐵)
20 archirng.l . . . . . . 7 = (le‘𝑊)
21 archirng.i . . . . . . 7 < = (lt‘𝑊)
2215, 20, 21tltnle 29790 . . . . . 6 ((𝑊 ∈ Toset ∧ 0𝐵𝑌𝐵) → ( 0 < 𝑌 ↔ ¬ 𝑌 0 ))
2312, 18, 19, 22syl3anc 1366 . . . . 5 (𝜑 → ( 0 < 𝑌 ↔ ¬ 𝑌 0 ))
247, 23mpbid 222 . . . 4 (𝜑 → ¬ 𝑌 0 )
25 archirng.3 . . . . . 6 (𝜑𝑋𝐵)
26 archirng.x . . . . . . 7 · = (.g𝑊)
2715, 16, 26mulg0 17593 . . . . . 6 (𝑋𝐵 → (0 · 𝑋) = 0 )
2825, 27syl 17 . . . . 5 (𝜑 → (0 · 𝑋) = 0 )
2928breq2d 4697 . . . 4 (𝜑 → (𝑌 (0 · 𝑋) ↔ 𝑌 0 ))
3024, 29mtbird 314 . . 3 (𝜑 → ¬ 𝑌 (0 · 𝑋))
3125, 19jca 553 . . . 4 (𝜑 → (𝑋𝐵𝑌𝐵))
32 omndmnd 29832 . . . . . 6 (𝑊 ∈ oMnd → 𝑊 ∈ Mnd)
338, 10, 323syl 18 . . . . 5 (𝜑𝑊 ∈ Mnd)
34 archirng.2 . . . . 5 (𝜑𝑊 ∈ Archi)
3515, 16, 26, 20, 21isarchi2 29867 . . . . . 6 ((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) → (𝑊 ∈ Archi ↔ ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥))))
3635biimpa 500 . . . . 5 (((𝑊 ∈ Toset ∧ 𝑊 ∈ Mnd) ∧ 𝑊 ∈ Archi) → ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)))
3712, 33, 34, 36syl21anc 1365 . . . 4 (𝜑 → ∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)))
38 archirng.5 . . . 4 (𝜑0 < 𝑋)
39 breq2 4689 . . . . . 6 (𝑥 = 𝑋 → ( 0 < 𝑥0 < 𝑋))
40 oveq2 6698 . . . . . . . 8 (𝑥 = 𝑋 → (𝑚 · 𝑥) = (𝑚 · 𝑋))
4140breq2d 4697 . . . . . . 7 (𝑥 = 𝑋 → (𝑦 (𝑚 · 𝑥) ↔ 𝑦 (𝑚 · 𝑋)))
4241rexbidv 3081 . . . . . 6 (𝑥 = 𝑋 → (∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥) ↔ ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋)))
4339, 42imbi12d 333 . . . . 5 (𝑥 = 𝑋 → (( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)) ↔ ( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋))))
44 breq1 4688 . . . . . . 7 (𝑦 = 𝑌 → (𝑦 (𝑚 · 𝑋) ↔ 𝑌 (𝑚 · 𝑋)))
4544rexbidv 3081 . . . . . 6 (𝑦 = 𝑌 → (∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋) ↔ ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋)))
4645imbi2d 329 . . . . 5 (𝑦 = 𝑌 → (( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑋)) ↔ ( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋))))
4743, 46rspc2v 3353 . . . 4 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 ( 0 < 𝑥 → ∃𝑚 ∈ ℕ 𝑦 (𝑚 · 𝑥)) → ( 0 < 𝑋 → ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋))))
4831, 37, 38, 47syl3c 66 . . 3 (𝜑 → ∃𝑚 ∈ ℕ 𝑌 (𝑚 · 𝑋))
492, 4, 6, 30, 48nn0min 29695 . 2 (𝜑 → ∃𝑛 ∈ ℕ0𝑌 (𝑛 · 𝑋) ∧ 𝑌 ((𝑛 + 1) · 𝑋)))
5012adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → 𝑊 ∈ Toset)
5114adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → 𝑊 ∈ Grp)
52 simpr 476 . . . . . . 7 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℕ0)
5352nn0zd 11518 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → 𝑛 ∈ ℤ)
5425adantr 480 . . . . . 6 ((𝜑𝑛 ∈ ℕ0) → 𝑋𝐵)
5515, 26mulgcl 17606 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋𝐵) → (𝑛 · 𝑋) ∈ 𝐵)
5651, 53, 54, 55syl3anc 1366 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → (𝑛 · 𝑋) ∈ 𝐵)
5719adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ0) → 𝑌𝐵)
5815, 20, 21tltnle 29790 . . . . 5 ((𝑊 ∈ Toset ∧ (𝑛 · 𝑋) ∈ 𝐵𝑌𝐵) → ((𝑛 · 𝑋) < 𝑌 ↔ ¬ 𝑌 (𝑛 · 𝑋)))
5950, 56, 57, 58syl3anc 1366 . . . 4 ((𝜑𝑛 ∈ ℕ0) → ((𝑛 · 𝑋) < 𝑌 ↔ ¬ 𝑌 (𝑛 · 𝑋)))
6059anbi1d 741 . . 3 ((𝜑𝑛 ∈ ℕ0) → (((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ (¬ 𝑌 (𝑛 · 𝑋) ∧ 𝑌 ((𝑛 + 1) · 𝑋))))
6160rexbidva 3078 . 2 (𝜑 → (∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)) ↔ ∃𝑛 ∈ ℕ0𝑌 (𝑛 · 𝑋) ∧ 𝑌 ((𝑛 + 1) · 𝑋))))
6249, 61mpbird 247 1 (𝜑 → ∃𝑛 ∈ ℕ0 ((𝑛 · 𝑋) < 𝑌𝑌 ((𝑛 + 1) · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942   class class class wbr 4685  cfv 5926  (class class class)co 6690  0cc0 9974  1c1 9975   + caddc 9977  cn 11058  0cn0 11330  cz 11415  Basecbs 15904  lecple 15995  0gc0g 16147  ltcplt 16988  Tosetctos 17080  Mndcmnd 17341  Grpcgrp 17469  .gcmg 17587  oMndcomnd 29825  oGrpcogrp 29826  Archicarchi 29859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-seq 12842  df-0g 16149  df-preset 16975  df-poset 16993  df-plt 17005  df-toset 17081  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-mulg 17588  df-omnd 29827  df-ogrp 29828  df-inftm 29860  df-archi 29861
This theorem is referenced by:  archirngz  29871  archiabllem1a  29873
  Copyright terms: Public domain W3C validator