Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem2a Structured version   Visualization version   GIF version

Theorem archiabllem2a 30028
 Description: Lemma for archiabl 30032, which requires the group to be both left- and right-ordered. (Contributed by Thierry Arnoux, 13-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem2.1 + = (+g𝑊)
archiabllem2.2 (𝜑 → (oppg𝑊) ∈ oGrp)
archiabllem2.3 ((𝜑𝑎𝐵0 < 𝑎) → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎))
archiabllem2a.4 (𝜑𝑋𝐵)
archiabllem2a.5 (𝜑0 < 𝑋)
Assertion
Ref Expression
archiabllem2a (𝜑 → ∃𝑐𝐵 ( 0 < 𝑐 ∧ (𝑐 + 𝑐) 𝑋))
Distinct variable groups:   𝑎,𝑏,𝑐,𝐵   𝑊,𝑎,𝑏,𝑐   𝑋,𝑎,𝑏,𝑐   𝜑,𝑎,𝑏   + ,𝑎,𝑏,𝑐   ,𝑎,𝑏,𝑐   < ,𝑎,𝑏,𝑐   0 ,𝑎,𝑏,𝑐
Allowed substitution hints:   𝜑(𝑐)   · (𝑎,𝑏,𝑐)

Proof of Theorem archiabllem2a
StepHypRef Expression
1 simpllr 817 . . . 4 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ (𝑏 + 𝑏) 𝑋) → 𝑏𝐵)
2 simplrl 819 . . . 4 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ (𝑏 + 𝑏) 𝑋) → 0 < 𝑏)
3 simpr 479 . . . 4 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ (𝑏 + 𝑏) 𝑋) → (𝑏 + 𝑏) 𝑋)
4 breq2 4796 . . . . . 6 (𝑐 = 𝑏 → ( 0 < 𝑐0 < 𝑏))
5 id 22 . . . . . . . 8 (𝑐 = 𝑏𝑐 = 𝑏)
65, 5oveq12d 6819 . . . . . . 7 (𝑐 = 𝑏 → (𝑐 + 𝑐) = (𝑏 + 𝑏))
76breq1d 4802 . . . . . 6 (𝑐 = 𝑏 → ((𝑐 + 𝑐) 𝑋 ↔ (𝑏 + 𝑏) 𝑋))
84, 7anbi12d 749 . . . . 5 (𝑐 = 𝑏 → (( 0 < 𝑐 ∧ (𝑐 + 𝑐) 𝑋) ↔ ( 0 < 𝑏 ∧ (𝑏 + 𝑏) 𝑋)))
98rspcev 3437 . . . 4 ((𝑏𝐵 ∧ ( 0 < 𝑏 ∧ (𝑏 + 𝑏) 𝑋)) → ∃𝑐𝐵 ( 0 < 𝑐 ∧ (𝑐 + 𝑐) 𝑋))
101, 2, 3, 9syl12anc 1461 . . 3 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ (𝑏 + 𝑏) 𝑋) → ∃𝑐𝐵 ( 0 < 𝑐 ∧ (𝑐 + 𝑐) 𝑋))
11 simplll 815 . . . . . 6 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → 𝜑)
12 archiabllem.g . . . . . 6 (𝜑𝑊 ∈ oGrp)
13 ogrpgrp 29983 . . . . . 6 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
1411, 12, 133syl 18 . . . . 5 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → 𝑊 ∈ Grp)
15 archiabllem2a.4 . . . . . 6 (𝜑𝑋𝐵)
1611, 15syl 17 . . . . 5 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → 𝑋𝐵)
17 simpllr 817 . . . . 5 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → 𝑏𝐵)
18 archiabllem.b . . . . . 6 𝐵 = (Base‘𝑊)
19 eqid 2748 . . . . . 6 (-g𝑊) = (-g𝑊)
2018, 19grpsubcl 17667 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑋𝐵𝑏𝐵) → (𝑋(-g𝑊)𝑏) ∈ 𝐵)
2114, 16, 17, 20syl3anc 1463 . . . 4 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (𝑋(-g𝑊)𝑏) ∈ 𝐵)
22 archiabllem.0 . . . . . . 7 0 = (0g𝑊)
2318, 22, 19grpsubid 17671 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑏𝐵) → (𝑏(-g𝑊)𝑏) = 0 )
2414, 17, 23syl2anc 696 . . . . 5 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (𝑏(-g𝑊)𝑏) = 0 )
2511, 12syl 17 . . . . . 6 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → 𝑊 ∈ oGrp)
26 simplrr 820 . . . . . 6 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → 𝑏 < 𝑋)
27 archiabllem.t . . . . . . 7 < = (lt‘𝑊)
2818, 27, 19ogrpsublt 30002 . . . . . 6 ((𝑊 ∈ oGrp ∧ (𝑏𝐵𝑋𝐵𝑏𝐵) ∧ 𝑏 < 𝑋) → (𝑏(-g𝑊)𝑏) < (𝑋(-g𝑊)𝑏))
2925, 17, 16, 17, 26, 28syl131anc 1476 . . . . 5 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (𝑏(-g𝑊)𝑏) < (𝑋(-g𝑊)𝑏))
3024, 29eqbrtrrd 4816 . . . 4 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → 0 < (𝑋(-g𝑊)𝑏))
31 archiabllem2.1 . . . . . . 7 + = (+g𝑊)
32 archiabllem2.2 . . . . . . . 8 (𝜑 → (oppg𝑊) ∈ oGrp)
3311, 32syl 17 . . . . . . 7 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (oppg𝑊) ∈ oGrp)
3418, 31grpcl 17602 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝑏𝐵𝑏𝐵) → (𝑏 + 𝑏) ∈ 𝐵)
3514, 17, 17, 34syl3anc 1463 . . . . . . . . 9 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (𝑏 + 𝑏) ∈ 𝐵)
36 simpr 479 . . . . . . . . 9 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → 𝑋 < (𝑏 + 𝑏))
3718, 27, 19ogrpsublt 30002 . . . . . . . . 9 ((𝑊 ∈ oGrp ∧ (𝑋𝐵 ∧ (𝑏 + 𝑏) ∈ 𝐵𝑏𝐵) ∧ 𝑋 < (𝑏 + 𝑏)) → (𝑋(-g𝑊)𝑏) < ((𝑏 + 𝑏)(-g𝑊)𝑏))
3825, 16, 35, 17, 36, 37syl131anc 1476 . . . . . . . 8 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (𝑋(-g𝑊)𝑏) < ((𝑏 + 𝑏)(-g𝑊)𝑏))
3918, 31, 19grpaddsubass 17677 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑏𝐵𝑏𝐵𝑏𝐵)) → ((𝑏 + 𝑏)(-g𝑊)𝑏) = (𝑏 + (𝑏(-g𝑊)𝑏)))
4014, 17, 17, 17, 39syl13anc 1465 . . . . . . . . 9 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → ((𝑏 + 𝑏)(-g𝑊)𝑏) = (𝑏 + (𝑏(-g𝑊)𝑏)))
4124oveq2d 6817 . . . . . . . . 9 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (𝑏 + (𝑏(-g𝑊)𝑏)) = (𝑏 + 0 ))
4218, 31, 22grprid 17625 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ 𝑏𝐵) → (𝑏 + 0 ) = 𝑏)
4314, 17, 42syl2anc 696 . . . . . . . . 9 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (𝑏 + 0 ) = 𝑏)
4440, 41, 433eqtrd 2786 . . . . . . . 8 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → ((𝑏 + 𝑏)(-g𝑊)𝑏) = 𝑏)
4538, 44breqtrd 4818 . . . . . . 7 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (𝑋(-g𝑊)𝑏) < 𝑏)
4618, 27, 31, 14, 33, 21, 17, 21, 45ogrpaddltrd 30000 . . . . . 6 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) < ((𝑋(-g𝑊)𝑏) + 𝑏))
4718, 31, 19grpnpcan 17679 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑋𝐵𝑏𝐵) → ((𝑋(-g𝑊)𝑏) + 𝑏) = 𝑋)
4814, 16, 17, 47syl3anc 1463 . . . . . 6 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → ((𝑋(-g𝑊)𝑏) + 𝑏) = 𝑋)
4946, 48breqtrd 4818 . . . . 5 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) < 𝑋)
50 ovexd 6831 . . . . . 6 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) ∈ V)
51 archiabllem.e . . . . . . 7 = (le‘𝑊)
5251, 27pltle 17133 . . . . . 6 ((𝑊 ∈ Grp ∧ ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) ∈ V ∧ 𝑋𝐵) → (((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) < 𝑋 → ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) 𝑋))
5314, 50, 16, 52syl3anc 1463 . . . . 5 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → (((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) < 𝑋 → ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) 𝑋))
5449, 53mpd 15 . . . 4 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) 𝑋)
55 breq2 4796 . . . . . 6 (𝑐 = (𝑋(-g𝑊)𝑏) → ( 0 < 𝑐0 < (𝑋(-g𝑊)𝑏)))
56 id 22 . . . . . . . 8 (𝑐 = (𝑋(-g𝑊)𝑏) → 𝑐 = (𝑋(-g𝑊)𝑏))
5756, 56oveq12d 6819 . . . . . . 7 (𝑐 = (𝑋(-g𝑊)𝑏) → (𝑐 + 𝑐) = ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)))
5857breq1d 4802 . . . . . 6 (𝑐 = (𝑋(-g𝑊)𝑏) → ((𝑐 + 𝑐) 𝑋 ↔ ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) 𝑋))
5955, 58anbi12d 749 . . . . 5 (𝑐 = (𝑋(-g𝑊)𝑏) → (( 0 < 𝑐 ∧ (𝑐 + 𝑐) 𝑋) ↔ ( 0 < (𝑋(-g𝑊)𝑏) ∧ ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) 𝑋)))
6059rspcev 3437 . . . 4 (((𝑋(-g𝑊)𝑏) ∈ 𝐵 ∧ ( 0 < (𝑋(-g𝑊)𝑏) ∧ ((𝑋(-g𝑊)𝑏) + (𝑋(-g𝑊)𝑏)) 𝑋)) → ∃𝑐𝐵 ( 0 < 𝑐 ∧ (𝑐 + 𝑐) 𝑋))
6121, 30, 54, 60syl12anc 1461 . . 3 ((((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) ∧ 𝑋 < (𝑏 + 𝑏)) → ∃𝑐𝐵 ( 0 < 𝑐 ∧ (𝑐 + 𝑐) 𝑋))
6212ad2antrr 764 . . . . 5 (((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) → 𝑊 ∈ oGrp)
63 isogrp 29982 . . . . . 6 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
6463simprbi 483 . . . . 5 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
65 omndtos 29985 . . . . 5 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
6662, 64, 653syl 18 . . . 4 (((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) → 𝑊 ∈ Toset)
6762, 13syl 17 . . . . 5 (((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) → 𝑊 ∈ Grp)
68 simplr 809 . . . . 5 (((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) → 𝑏𝐵)
6967, 68, 68, 34syl3anc 1463 . . . 4 (((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) → (𝑏 + 𝑏) ∈ 𝐵)
7015ad2antrr 764 . . . 4 (((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) → 𝑋𝐵)
7118, 51, 27tlt2 29944 . . . 4 ((𝑊 ∈ Toset ∧ (𝑏 + 𝑏) ∈ 𝐵𝑋𝐵) → ((𝑏 + 𝑏) 𝑋𝑋 < (𝑏 + 𝑏)))
7266, 69, 70, 71syl3anc 1463 . . 3 (((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) → ((𝑏 + 𝑏) 𝑋𝑋 < (𝑏 + 𝑏)))
7310, 61, 72mpjaodan 862 . 2 (((𝜑𝑏𝐵) ∧ ( 0 < 𝑏𝑏 < 𝑋)) → ∃𝑐𝐵 ( 0 < 𝑐 ∧ (𝑐 + 𝑐) 𝑋))
74 archiabllem2.3 . . . . 5 ((𝜑𝑎𝐵0 < 𝑎) → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎))
75743expia 1114 . . . 4 ((𝜑𝑎𝐵) → ( 0 < 𝑎 → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎)))
7675ralrimiva 3092 . . 3 (𝜑 → ∀𝑎𝐵 ( 0 < 𝑎 → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎)))
77 archiabllem2a.5 . . 3 (𝜑0 < 𝑋)
78 breq2 4796 . . . . 5 (𝑎 = 𝑋 → ( 0 < 𝑎0 < 𝑋))
79 breq2 4796 . . . . . . 7 (𝑎 = 𝑋 → (𝑏 < 𝑎𝑏 < 𝑋))
8079anbi2d 742 . . . . . 6 (𝑎 = 𝑋 → (( 0 < 𝑏𝑏 < 𝑎) ↔ ( 0 < 𝑏𝑏 < 𝑋)))
8180rexbidv 3178 . . . . 5 (𝑎 = 𝑋 → (∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎) ↔ ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑋)))
8278, 81imbi12d 333 . . . 4 (𝑎 = 𝑋 → (( 0 < 𝑎 → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎)) ↔ ( 0 < 𝑋 → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑋))))
8382rspcv 3433 . . 3 (𝑋𝐵 → (∀𝑎𝐵 ( 0 < 𝑎 → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑎)) → ( 0 < 𝑋 → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑋))))
8415, 76, 77, 83syl3c 66 . 2 (𝜑 → ∃𝑏𝐵 ( 0 < 𝑏𝑏 < 𝑋))
8573, 84r19.29a 3204 1 (𝜑 → ∃𝑐𝐵 ( 0 < 𝑐 ∧ (𝑐 + 𝑐) 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1620   ∈ wcel 2127  ∀wral 3038  ∃wrex 3039  Vcvv 3328   class class class wbr 4792  ‘cfv 6037  (class class class)co 6801  Basecbs 16030  +gcplusg 16114  lecple 16121  0gc0g 16273  ltcplt 17113  Tosetctos 17205  Grpcgrp 17594  -gcsg 17596  .gcmg 17712  oppgcoppg 17946  oMndcomnd 29977  oGrpcogrp 29978  Archicarchi 30011 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-rep 4911  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-1cn 10157  ax-icn 10158  ax-addcl 10159  ax-addrcl 10160  ax-mulcl 10161  ax-mulrcl 10162  ax-mulcom 10163  ax-addass 10164  ax-mulass 10165  ax-distr 10166  ax-i2m1 10167  ax-1ne0 10168  ax-1rid 10169  ax-rnegex 10170  ax-rrecex 10171  ax-cnre 10172  ax-pre-lttri 10173  ax-pre-lttrn 10174  ax-pre-ltadd 10175  ax-pre-mulgt0 10176 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-reu 3045  df-rmo 3046  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-pss 3719  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-tp 4314  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-tr 4893  df-id 5162  df-eprel 5167  df-po 5175  df-so 5176  df-fr 5213  df-we 5215  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-pred 5829  df-ord 5875  df-on 5876  df-lim 5877  df-suc 5878  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-riota 6762  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-om 7219  df-1st 7321  df-2nd 7322  df-tpos 7509  df-wrecs 7564  df-recs 7625  df-rdg 7663  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-sub 10431  df-neg 10432  df-nn 11184  df-2 11242  df-3 11243  df-4 11244  df-5 11245  df-6 11246  df-7 11247  df-8 11248  df-9 11249  df-dec 11657  df-ndx 16033  df-slot 16034  df-base 16036  df-sets 16037  df-plusg 16127  df-ple 16134  df-0g 16275  df-preset 17100  df-poset 17118  df-plt 17130  df-toset 17206  df-mgm 17414  df-sgrp 17456  df-mnd 17467  df-grp 17597  df-minusg 17598  df-sbg 17599  df-oppg 17947  df-omnd 29979  df-ogrp 29980 This theorem is referenced by:  archiabllem2c  30029
 Copyright terms: Public domain W3C validator