Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  archiabllem1a Structured version   Visualization version   GIF version

Theorem archiabllem1a 30079
Description: Lemma for archiabl 30086: In case an archimedean group 𝑊 admits a smallest positive element 𝑈, then any positive element 𝑋 of 𝑊 can be written as (𝑛 · 𝑈) with 𝑛 ∈ ℕ. Since the reciprocal holds for negative elements, 𝑊 is then isomorphic to . (Contributed by Thierry Arnoux, 12-Apr-2018.)
Hypotheses
Ref Expression
archiabllem.b 𝐵 = (Base‘𝑊)
archiabllem.0 0 = (0g𝑊)
archiabllem.e = (le‘𝑊)
archiabllem.t < = (lt‘𝑊)
archiabllem.m · = (.g𝑊)
archiabllem.g (𝜑𝑊 ∈ oGrp)
archiabllem.a (𝜑𝑊 ∈ Archi)
archiabllem1.u (𝜑𝑈𝐵)
archiabllem1.p (𝜑0 < 𝑈)
archiabllem1.s ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
archiabllem1a.x (𝜑𝑋𝐵)
archiabllem1a.c (𝜑0 < 𝑋)
Assertion
Ref Expression
archiabllem1a (𝜑 → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
Distinct variable groups:   𝑥,𝑛,𝐵   𝑈,𝑛,𝑥   𝑛,𝑊,𝑥   𝑛,𝑋,𝑥   𝜑,𝑛,𝑥   · ,𝑛,𝑥   0 ,𝑛,𝑥   < ,𝑛,𝑥   𝑥,
Allowed substitution hint:   (𝑛)

Proof of Theorem archiabllem1a
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simplr 744 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑚 ∈ ℕ0)
2 nn0p1nn 11533 . . . 4 (𝑚 ∈ ℕ0 → (𝑚 + 1) ∈ ℕ)
31, 2syl 17 . . 3 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 + 1) ∈ ℕ)
4 archiabllem1.u . . . . . . . 8 (𝜑𝑈𝐵)
54ad2antrr 697 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑈𝐵)
6 archiabllem.b . . . . . . . 8 𝐵 = (Base‘𝑊)
7 archiabllem.m . . . . . . . 8 · = (.g𝑊)
86, 7mulg1 17755 . . . . . . 7 (𝑈𝐵 → (1 · 𝑈) = 𝑈)
95, 8syl 17 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (1 · 𝑈) = 𝑈)
109oveq1d 6807 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((1 · 𝑈)(+g𝑊)(𝑚 · 𝑈)) = (𝑈(+g𝑊)(𝑚 · 𝑈)))
11 archiabllem.g . . . . . . . 8 (𝜑𝑊 ∈ oGrp)
1211ad2antrr 697 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑊 ∈ oGrp)
13 ogrpgrp 30037 . . . . . . 7 (𝑊 ∈ oGrp → 𝑊 ∈ Grp)
1412, 13syl 17 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑊 ∈ Grp)
15 1zzd 11609 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 1 ∈ ℤ)
161nn0zd 11681 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑚 ∈ ℤ)
17 eqid 2770 . . . . . . 7 (+g𝑊) = (+g𝑊)
186, 7, 17mulgdir 17780 . . . . . 6 ((𝑊 ∈ Grp ∧ (1 ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵)) → ((1 + 𝑚) · 𝑈) = ((1 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
1914, 15, 16, 5, 18syl13anc 1477 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((1 + 𝑚) · 𝑈) = ((1 · 𝑈)(+g𝑊)(𝑚 · 𝑈)))
20 isogrp 30036 . . . . . . . . . 10 (𝑊 ∈ oGrp ↔ (𝑊 ∈ Grp ∧ 𝑊 ∈ oMnd))
2120simprbi 478 . . . . . . . . 9 (𝑊 ∈ oGrp → 𝑊 ∈ oMnd)
22 omndtos 30039 . . . . . . . . 9 (𝑊 ∈ oMnd → 𝑊 ∈ Toset)
23 tospos 29992 . . . . . . . . 9 (𝑊 ∈ Toset → 𝑊 ∈ Poset)
2421, 22, 233syl 18 . . . . . . . 8 (𝑊 ∈ oGrp → 𝑊 ∈ Poset)
2512, 24syl 17 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑊 ∈ Poset)
26 archiabllem1a.x . . . . . . . . 9 (𝜑𝑋𝐵)
2726ad2antrr 697 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑋𝐵)
286, 7mulgcl 17766 . . . . . . . . 9 ((𝑊 ∈ Grp ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵) → (𝑚 · 𝑈) ∈ 𝐵)
2914, 16, 5, 28syl3anc 1475 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 · 𝑈) ∈ 𝐵)
30 eqid 2770 . . . . . . . . 9 (-g𝑊) = (-g𝑊)
316, 30grpsubcl 17702 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) → (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵)
3214, 27, 29, 31syl3anc 1475 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵)
3316peano2zd 11686 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 + 1) ∈ ℤ)
346, 7mulgcl 17766 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑚 + 1) ∈ ℤ ∧ 𝑈𝐵) → ((𝑚 + 1) · 𝑈) ∈ 𝐵)
3514, 33, 5, 34syl3anc 1475 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 + 1) · 𝑈) ∈ 𝐵)
36 simprr 748 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑋 ((𝑚 + 1) · 𝑈))
37 archiabllem.e . . . . . . . . . 10 = (le‘𝑊)
386, 37, 30ogrpsub 30051 . . . . . . . . 9 ((𝑊 ∈ oGrp ∧ (𝑋𝐵 ∧ ((𝑚 + 1) · 𝑈) ∈ 𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) ∧ 𝑋 ((𝑚 + 1) · 𝑈)) → (𝑋(-g𝑊)(𝑚 · 𝑈)) (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
3912, 27, 35, 29, 36, 38syl131anc 1488 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
401nn0cnd 11554 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑚 ∈ ℂ)
41 1cnd 10257 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 1 ∈ ℂ)
4240, 41pncan2d 10595 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 + 1) − 𝑚) = 1)
4342oveq1d 6807 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (((𝑚 + 1) − 𝑚) · 𝑈) = (1 · 𝑈))
446, 7, 30mulgsubdir 17789 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ ((𝑚 + 1) ∈ ℤ ∧ 𝑚 ∈ ℤ ∧ 𝑈𝐵)) → (((𝑚 + 1) − 𝑚) · 𝑈) = (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
4514, 33, 16, 5, 44syl13anc 1477 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (((𝑚 + 1) − 𝑚) · 𝑈) = (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)))
4643, 45, 93eqtr3d 2812 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (((𝑚 + 1) · 𝑈)(-g𝑊)(𝑚 · 𝑈)) = 𝑈)
4739, 46breqtrd 4810 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) 𝑈)
48 archiabllem1.s . . . . . . . . . . 11 ((𝜑𝑥𝐵0 < 𝑥) → 𝑈 𝑥)
49483expia 1113 . . . . . . . . . 10 ((𝜑𝑥𝐵) → ( 0 < 𝑥𝑈 𝑥))
5049ralrimiva 3114 . . . . . . . . 9 (𝜑 → ∀𝑥𝐵 ( 0 < 𝑥𝑈 𝑥))
5150ad2antrr 697 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ∀𝑥𝐵 ( 0 < 𝑥𝑈 𝑥))
52 archiabllem.0 . . . . . . . . . . 11 0 = (0g𝑊)
536, 52, 30grpsubid 17706 . . . . . . . . . 10 ((𝑊 ∈ Grp ∧ (𝑚 · 𝑈) ∈ 𝐵) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) = 0 )
5414, 29, 53syl2anc 565 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) = 0 )
55 simprl 746 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑚 · 𝑈) < 𝑋)
56 archiabllem.t . . . . . . . . . . 11 < = (lt‘𝑊)
576, 56, 30ogrpsublt 30056 . . . . . . . . . 10 ((𝑊 ∈ oGrp ∧ ((𝑚 · 𝑈) ∈ 𝐵𝑋𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) ∧ (𝑚 · 𝑈) < 𝑋) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) < (𝑋(-g𝑊)(𝑚 · 𝑈)))
5812, 29, 27, 29, 55, 57syl131anc 1488 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑚 · 𝑈)(-g𝑊)(𝑚 · 𝑈)) < (𝑋(-g𝑊)(𝑚 · 𝑈)))
5954, 58eqbrtrrd 4808 . . . . . . . 8 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 0 < (𝑋(-g𝑊)(𝑚 · 𝑈)))
60 breq2 4788 . . . . . . . . . 10 (𝑥 = (𝑋(-g𝑊)(𝑚 · 𝑈)) → ( 0 < 𝑥0 < (𝑋(-g𝑊)(𝑚 · 𝑈))))
61 breq2 4788 . . . . . . . . . 10 (𝑥 = (𝑋(-g𝑊)(𝑚 · 𝑈)) → (𝑈 𝑥𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈))))
6260, 61imbi12d 333 . . . . . . . . 9 (𝑥 = (𝑋(-g𝑊)(𝑚 · 𝑈)) → (( 0 < 𝑥𝑈 𝑥) ↔ ( 0 < (𝑋(-g𝑊)(𝑚 · 𝑈)) → 𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))))
6362rspcv 3454 . . . . . . . 8 ((𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵 → (∀𝑥𝐵 ( 0 < 𝑥𝑈 𝑥) → ( 0 < (𝑋(-g𝑊)(𝑚 · 𝑈)) → 𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))))
6432, 51, 59, 63syl3c 66 . . . . . . 7 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))
656, 37posasymb 17159 . . . . . . . 8 ((𝑊 ∈ Poset ∧ (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵𝑈𝐵) → (((𝑋(-g𝑊)(𝑚 · 𝑈)) 𝑈𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈))) ↔ (𝑋(-g𝑊)(𝑚 · 𝑈)) = 𝑈))
6665biimpa 462 . . . . . . 7 (((𝑊 ∈ Poset ∧ (𝑋(-g𝑊)(𝑚 · 𝑈)) ∈ 𝐵𝑈𝐵) ∧ ((𝑋(-g𝑊)(𝑚 · 𝑈)) 𝑈𝑈 (𝑋(-g𝑊)(𝑚 · 𝑈)))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) = 𝑈)
6725, 32, 5, 47, 64, 66syl32anc 1483 . . . . . 6 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (𝑋(-g𝑊)(𝑚 · 𝑈)) = 𝑈)
6867oveq1d 6807 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = (𝑈(+g𝑊)(𝑚 · 𝑈)))
6910, 19, 683eqtr4rd 2815 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = ((1 + 𝑚) · 𝑈))
706, 17, 30grpnpcan 17714 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑋𝐵 ∧ (𝑚 · 𝑈) ∈ 𝐵) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = 𝑋)
7114, 27, 29, 70syl3anc 1475 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((𝑋(-g𝑊)(𝑚 · 𝑈))(+g𝑊)(𝑚 · 𝑈)) = 𝑋)
7241, 40addcomd 10439 . . . . 5 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → (1 + 𝑚) = (𝑚 + 1))
7372oveq1d 6807 . . . 4 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ((1 + 𝑚) · 𝑈) = ((𝑚 + 1) · 𝑈))
7469, 71, 733eqtr3d 2812 . . 3 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → 𝑋 = ((𝑚 + 1) · 𝑈))
75 oveq1 6799 . . . . 5 (𝑛 = (𝑚 + 1) → (𝑛 · 𝑈) = ((𝑚 + 1) · 𝑈))
7675eqeq2d 2780 . . . 4 (𝑛 = (𝑚 + 1) → (𝑋 = (𝑛 · 𝑈) ↔ 𝑋 = ((𝑚 + 1) · 𝑈)))
7776rspcev 3458 . . 3 (((𝑚 + 1) ∈ ℕ ∧ 𝑋 = ((𝑚 + 1) · 𝑈)) → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
783, 74, 77syl2anc 565 . 2 (((𝜑𝑚 ∈ ℕ0) ∧ ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈))) → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
79 archiabllem.a . . 3 (𝜑𝑊 ∈ Archi)
80 archiabllem1.p . . 3 (𝜑0 < 𝑈)
81 archiabllem1a.c . . 3 (𝜑0 < 𝑋)
826, 52, 56, 37, 7, 11, 79, 4, 26, 80, 81archirng 30076 . 2 (𝜑 → ∃𝑚 ∈ ℕ0 ((𝑚 · 𝑈) < 𝑋𝑋 ((𝑚 + 1) · 𝑈)))
8378, 82r19.29a 3225 1 (𝜑 → ∃𝑛 ∈ ℕ 𝑋 = (𝑛 · 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1070   = wceq 1630  wcel 2144  wral 3060  wrex 3061   class class class wbr 4784  cfv 6031  (class class class)co 6792  1c1 10138   + caddc 10140  cmin 10467  cn 11221  0cn0 11493  cz 11578  Basecbs 16063  +gcplusg 16148  lecple 16155  0gc0g 16307  Posetcpo 17147  ltcplt 17148  Tosetctos 17240  Grpcgrp 17629  -gcsg 17631  .gcmg 17747  oMndcomnd 30031  oGrpcogrp 30032  Archicarchi 30065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-seq 13008  df-0g 16309  df-preset 17135  df-poset 17153  df-plt 17165  df-toset 17241  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-grp 17632  df-minusg 17633  df-sbg 17634  df-mulg 17748  df-omnd 30033  df-ogrp 30034  df-inftm 30066  df-archi 30067
This theorem is referenced by:  archiabllem1b  30080
  Copyright terms: Public domain W3C validator