Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aovmpt4g Structured version   Visualization version   GIF version

Theorem aovmpt4g 41805
 Description: Value of a function given by the "maps to" notation, analogous to ovmpt4g 6949. (Contributed by Alexander van der Vekens, 26-May-2017.)
Hypothesis
Ref Expression
aovmpt4g.3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
aovmpt4g ((𝑥𝐴𝑦𝐵𝐶𝑉) → ((𝑥𝐹𝑦)) = 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem aovmpt4g
StepHypRef Expression
1 aovmpt4g.3 . . . . . . 7 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21dmmpt2g 7412 . . . . . 6 (𝐶𝑉 → dom 𝐹 = (𝐴 × 𝐵))
3 opelxpi 5305 . . . . . . 7 ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵))
4 eleq2 2828 . . . . . . 7 (dom 𝐹 = (𝐴 × 𝐵) → (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵)))
53, 4syl5ibr 236 . . . . . 6 (dom 𝐹 = (𝐴 × 𝐵) → ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹))
62, 5syl 17 . . . . 5 (𝐶𝑉 → ((𝑥𝐴𝑦𝐵) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹))
76impcom 445 . . . 4 (((𝑥𝐴𝑦𝐵) ∧ 𝐶𝑉) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
873impa 1101 . . 3 ((𝑥𝐴𝑦𝐵𝐶𝑉) → ⟨𝑥, 𝑦⟩ ∈ dom 𝐹)
91mpt2fun 6928 . . . 4 Fun 𝐹
10 funres 6090 . . . 4 (Fun 𝐹 → Fun (𝐹 ↾ {⟨𝑥, 𝑦⟩}))
119, 10ax-mp 5 . . 3 Fun (𝐹 ↾ {⟨𝑥, 𝑦⟩})
12 df-dfat 41720 . . . 4 (𝐹 defAt ⟨𝑥, 𝑦⟩ ↔ (⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {⟨𝑥, 𝑦⟩})))
13 aovfundmoveq 41785 . . . 4 (𝐹 defAt ⟨𝑥, 𝑦⟩ → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦))
1412, 13sylbir 225 . . 3 ((⟨𝑥, 𝑦⟩ ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {⟨𝑥, 𝑦⟩})) → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦))
158, 11, 14sylancl 697 . 2 ((𝑥𝐴𝑦𝐵𝐶𝑉) → ((𝑥𝐹𝑦)) = (𝑥𝐹𝑦))
161ovmpt4g 6949 . 2 ((𝑥𝐴𝑦𝐵𝐶𝑉) → (𝑥𝐹𝑦) = 𝐶)
1715, 16eqtrd 2794 1 ((𝑥𝐴𝑦𝐵𝐶𝑉) → ((𝑥𝐹𝑦)) = 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  {csn 4321  ⟨cop 4327   × cxp 5264  dom cdm 5266   ↾ cres 5268  Fun wfun 6043  (class class class)co 6814   ↦ cmpt2 6816   defAt wdfat 41717   ((caov 41719 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-1st 7334  df-2nd 7335  df-dfat 41720  df-afv 41721  df-aov 41722 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator