Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  aov0nbovbi Structured version   Visualization version   GIF version

Theorem aov0nbovbi 41799
Description: The operation's value on an ordered pair is an element of a set if and only if the alternative value of the operation on this ordered pair is an element of that set, if the set does not contain the empty set. (Contributed by Alexander van der Vekens, 26-May-2017.)
Assertion
Ref Expression
aov0nbovbi (∅ ∉ 𝐶 → ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶))

Proof of Theorem aov0nbovbi
StepHypRef Expression
1 afv0nbfvbi 41755 . 2 (∅ ∉ 𝐶 → ((𝐹'''⟨𝐴, 𝐵⟩) ∈ 𝐶 ↔ (𝐹‘⟨𝐴, 𝐵⟩) ∈ 𝐶))
2 df-aov 41722 . . 3 ((𝐴𝐹𝐵)) = (𝐹'''⟨𝐴, 𝐵⟩)
32eleq1i 2830 . 2 ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐹'''⟨𝐴, 𝐵⟩) ∈ 𝐶)
4 df-ov 6817 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
54eleq1i 2830 . 2 ((𝐴𝐹𝐵) ∈ 𝐶 ↔ (𝐹‘⟨𝐴, 𝐵⟩) ∈ 𝐶)
61, 3, 53bitr4g 303 1 (∅ ∉ 𝐶 → ( ((𝐴𝐹𝐵)) ∈ 𝐶 ↔ (𝐴𝐹𝐵) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 2139  wnel 3035  c0 4058  cop 4327  cfv 6049  (class class class)co 6814  '''cafv 41718   ((caov 41719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-res 5278  df-iota 6012  df-fun 6051  df-fv 6057  df-ov 6817  df-dfat 41720  df-afv 41721  df-aov 41722
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator