Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  annotanannotOLD Structured version   Visualization version   GIF version

Theorem annotanannotOLD 978
 Description: Obsolete proof of annotanannot 977 as of 1-Apr-2022. (Contributed by AV, 8-Mar-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
annotanannotOLD ((𝜑 ∧ ¬ (𝜑𝜓)) ↔ (𝜑 ∧ ¬ 𝜓))

Proof of Theorem annotanannotOLD
StepHypRef Expression
1 ianor 510 . . 3 (¬ (𝜑𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓))
21anbi2i 732 . 2 ((𝜑 ∧ ¬ (𝜑𝜓)) ↔ (𝜑 ∧ (¬ 𝜑 ∨ ¬ 𝜓)))
3 andi 947 . 2 ((𝜑 ∧ (¬ 𝜑 ∨ ¬ 𝜓)) ↔ ((𝜑 ∧ ¬ 𝜑) ∨ (𝜑 ∧ ¬ 𝜓)))
4 pm3.24 962 . . . . 5 ¬ (𝜑 ∧ ¬ 𝜑)
54pm2.21i 116 . . . 4 ((𝜑 ∧ ¬ 𝜑) → (𝜑 ∧ ¬ 𝜓))
6 id 22 . . . 4 ((𝜑 ∧ ¬ 𝜓) → (𝜑 ∧ ¬ 𝜓))
75, 6jaoi 393 . . 3 (((𝜑 ∧ ¬ 𝜑) ∨ (𝜑 ∧ ¬ 𝜓)) → (𝜑 ∧ ¬ 𝜓))
8 olc 398 . . 3 ((𝜑 ∧ ¬ 𝜓) → ((𝜑 ∧ ¬ 𝜑) ∨ (𝜑 ∧ ¬ 𝜓)))
97, 8impbii 199 . 2 (((𝜑 ∧ ¬ 𝜑) ∨ (𝜑 ∧ ¬ 𝜓)) ↔ (𝜑 ∧ ¬ 𝜓))
102, 3, 93bitri 286 1 ((𝜑 ∧ ¬ (𝜑𝜓)) ↔ (𝜑 ∧ ¬ 𝜓))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 196   ∨ wo 382   ∧ wa 383 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator