MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  animorr Structured version   Visualization version   GIF version

Theorem animorr 507
Description: Conjunction implies disjunction with one common formula (2/4). (Contributed by BJ, 4-Oct-2019.)
Assertion
Ref Expression
animorr ((𝜑𝜓) → (𝜒𝜓))

Proof of Theorem animorr
StepHypRef Expression
1 simpr 479 . 2 ((𝜑𝜓) → 𝜓)
21olcd 407 1 ((𝜑𝜓) → (𝜒𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385
This theorem is referenced by:  3vfriswmgrlem  27352  bj-dfbi6  32787  nelpr2  39677
  Copyright terms: Public domain W3C validator