Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  anim12ii Structured version   Visualization version   GIF version

Theorem anim12ii 593
 Description: Conjoin antecedents and consequents in a deduction. (Contributed by NM, 11-Nov-2007.) (Proof shortened by Wolf Lammen, 19-Jul-2013.)
Hypotheses
Ref Expression
anim12ii.1 (𝜑 → (𝜓𝜒))
anim12ii.2 (𝜃 → (𝜓𝜏))
Assertion
Ref Expression
anim12ii ((𝜑𝜃) → (𝜓 → (𝜒𝜏)))

Proof of Theorem anim12ii
StepHypRef Expression
1 anim12ii.1 . . 3 (𝜑 → (𝜓𝜒))
21adantr 481 . 2 ((𝜑𝜃) → (𝜓𝜒))
3 anim12ii.2 . . 3 (𝜃 → (𝜓𝜏))
43adantl 482 . 2 ((𝜑𝜃) → (𝜓𝜏))
52, 4jcad 555 1 ((𝜑𝜃) → (𝜓 → (𝜒𝜏)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8 This theorem depends on definitions:  df-bi 197  df-an 386 This theorem is referenced by:  euim  2522  2mo  2550  elex22  3207  tz7.2  5068  funcnvuni  7081  upgrwlkdvdelem  26535  funressnfv  40542
 Copyright terms: Public domain W3C validator