![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anim12dan | Structured version Visualization version GIF version |
Description: Conjoin antecedents and consequents in a deduction. (Contributed by Mario Carneiro, 12-May-2014.) |
Ref | Expression |
---|---|
anim12dan.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
anim12dan.2 | ⊢ ((𝜑 ∧ 𝜃) → 𝜏) |
Ref | Expression |
---|---|
anim12dan | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anim12dan.1 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
2 | 1 | ex 449 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) |
3 | anim12dan.2 | . . . 4 ⊢ ((𝜑 ∧ 𝜃) → 𝜏) | |
4 | 3 | ex 449 | . . 3 ⊢ (𝜑 → (𝜃 → 𝜏)) |
5 | 2, 4 | anim12d 587 | . 2 ⊢ (𝜑 → ((𝜓 ∧ 𝜃) → (𝜒 ∧ 𝜏))) |
6 | 5 | imp 444 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜃)) → (𝜒 ∧ 𝜏)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: 2f1fvneq 6680 isocnv 6743 isocnv3 6745 f1oiso2 6765 xpexr2 7272 f1o2ndf1 7453 fnwelem 7460 omword 7819 oeword 7839 swoso 7944 xpf1o 8287 zorn2lem6 9515 ltapr 10059 ltord1 10746 pc11 15786 imasaddfnlem 16390 imasaddflem 16392 pslem 17407 mhmpropd 17542 frmdsssubm 17599 ghmsub 17869 gasubg 17935 invrpropd 18898 mplcoe5lem 19669 evlseu 19718 znfld 20111 cygznlem3 20120 cpmatmcl 20726 tgclb 20976 innei 21131 txcn 21631 txflf 22011 qustgplem 22125 clmsub4 23106 cfilresi 23293 volcn 23574 itg1addlem4 23665 dvlip 23955 plymullem1 24169 lgsdir2 25254 lgsdchr 25279 brbtwn2 25984 axcontlem7 26049 frgrncvvdeqlem8 27460 nvaddsub4 27821 hhcno 29072 hhcnf 29073 unopf1o 29084 counop 29089 afsval 31058 ontopbas 32733 onsuct0 32746 heicant 33757 ftc1anclem6 33803 anim12da 33819 equivbnd2 33904 ismtybndlem 33918 ismrer1 33950 iccbnd 33952 xihopellsmN 37045 dihopellsm 37046 dvconstbi 39035 fargshiftf1 41887 mgmhmpropd 42295 elpglem1 42967 |
Copyright terms: Public domain | W3C validator |