MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  angpieqvd Structured version   Visualization version   GIF version

Theorem angpieqvd 24779
Description: The angle ABC is π iff B is a nontrivial convex combination of A and C, i.e., iff B is in the interior of the segment AC. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
angpieqvd.angdef 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
angpieqvd.A (𝜑𝐴 ∈ ℂ)
angpieqvd.B (𝜑𝐵 ∈ ℂ)
angpieqvd.C (𝜑𝐶 ∈ ℂ)
angpieqvd.AneB (𝜑𝐴𝐵)
angpieqvd.BneC (𝜑𝐵𝐶)
Assertion
Ref Expression
angpieqvd (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π ↔ ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑤,𝐹   𝜑,𝑤   𝑤,𝐴   𝑤,𝐵   𝑤,𝐶
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem angpieqvd
StepHypRef Expression
1 angpieqvd.angdef . . . . . . 7 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
2 angpieqvd.A . . . . . . 7 (𝜑𝐴 ∈ ℂ)
3 angpieqvd.B . . . . . . 7 (𝜑𝐵 ∈ ℂ)
4 angpieqvd.C . . . . . . 7 (𝜑𝐶 ∈ ℂ)
5 angpieqvd.AneB . . . . . . 7 (𝜑𝐴𝐵)
6 angpieqvd.BneC . . . . . . 7 (𝜑𝐵𝐶)
71, 2, 3, 4, 5, 6angpieqvdlem2 24777 . . . . . 6 (𝜑 → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
87biimpar 463 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → -((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+)
92adantr 466 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐴 ∈ ℂ)
103adantr 466 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐵 ∈ ℂ)
114adantr 466 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐶 ∈ ℂ)
125adantr 466 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐴𝐵)
131, 2, 3, 4, 5, 6angpined 24778 . . . . . . 7 (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π → 𝐴𝐶))
1413imp 393 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐴𝐶)
159, 10, 11, 12, 14angpieqvdlem 24776 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))
168, 15mpbid 222 . . . 4 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1))
174, 3subcld 10594 . . . . . . . 8 (𝜑 → (𝐶𝐵) ∈ ℂ)
1817adantr 466 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐵) ∈ ℂ)
194, 2subcld 10594 . . . . . . . 8 (𝜑 → (𝐶𝐴) ∈ ℂ)
2019adantr 466 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐴) ∈ ℂ)
2114necomd 2998 . . . . . . . 8 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐶𝐴)
2211, 9, 21subne0d 10603 . . . . . . 7 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐴) ≠ 0)
2318, 20, 22divcan1d 11004 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (((𝐶𝐵) / (𝐶𝐴)) · (𝐶𝐴)) = (𝐶𝐵))
2423eqcomd 2777 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐶𝐵) = (((𝐶𝐵) / (𝐶𝐴)) · (𝐶𝐴)))
2518, 20, 22divcld 11003 . . . . . 6 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → ((𝐶𝐵) / (𝐶𝐴)) ∈ ℂ)
269, 10, 11, 25affineequiv 24774 . . . . 5 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → (𝐵 = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶)) ↔ (𝐶𝐵) = (((𝐶𝐵) / (𝐶𝐴)) · (𝐶𝐴))))
2724, 26mpbird 247 . . . 4 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → 𝐵 = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶)))
28 oveq1 6800 . . . . . . 7 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → (𝑤 · 𝐴) = (((𝐶𝐵) / (𝐶𝐴)) · 𝐴))
29 oveq2 6801 . . . . . . . 8 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → (1 − 𝑤) = (1 − ((𝐶𝐵) / (𝐶𝐴))))
3029oveq1d 6808 . . . . . . 7 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → ((1 − 𝑤) · 𝐶) = ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶))
3128, 30oveq12d 6811 . . . . . 6 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶)))
3231eqeq2d 2781 . . . . 5 (𝑤 = ((𝐶𝐵) / (𝐶𝐴)) → (𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) ↔ 𝐵 = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶))))
3332rspcev 3460 . . . 4 ((((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1) ∧ 𝐵 = ((((𝐶𝐵) / (𝐶𝐴)) · 𝐴) + ((1 − ((𝐶𝐵) / (𝐶𝐴))) · 𝐶))) → ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)))
3416, 27, 33syl2anc 573 . . 3 ((𝜑 ∧ ((𝐴𝐵)𝐹(𝐶𝐵)) = π) → ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)))
3534ex 397 . 2 (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π → ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶))))
362adantr 466 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝐴 ∈ ℂ)
373adantr 466 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝐵 ∈ ℂ)
384adantr 466 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝐶 ∈ ℂ)
39 simpr 471 . . . . . 6 ((𝜑𝑤 ∈ (0(,)1)) → 𝑤 ∈ (0(,)1))
40 elioore 12410 . . . . . 6 (𝑤 ∈ (0(,)1) → 𝑤 ∈ ℝ)
41 recn 10228 . . . . . 6 (𝑤 ∈ ℝ → 𝑤 ∈ ℂ)
4239, 40, 413syl 18 . . . . 5 ((𝜑𝑤 ∈ (0(,)1)) → 𝑤 ∈ ℂ)
4336, 37, 38, 42affineequiv 24774 . . . 4 ((𝜑𝑤 ∈ (0(,)1)) → (𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) ↔ (𝐶𝐵) = (𝑤 · (𝐶𝐴))))
44 simp3 1132 . . . . . . . . 9 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐵) = (𝑤 · (𝐶𝐴)))
45173ad2ant1 1127 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐵) ∈ ℂ)
46423adant3 1126 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝑤 ∈ ℂ)
47193ad2ant1 1127 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐴) ∈ ℂ)
486necomd 2998 . . . . . . . . . . . . . 14 (𝜑𝐶𝐵)
494, 3, 48subne0d 10603 . . . . . . . . . . . . 13 (𝜑 → (𝐶𝐵) ≠ 0)
50493ad2ant1 1127 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐵) ≠ 0)
5144, 50eqnetrrd 3011 . . . . . . . . . . 11 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝑤 · (𝐶𝐴)) ≠ 0)
5246, 47, 51mulne0bbd 10885 . . . . . . . . . 10 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (𝐶𝐴) ≠ 0)
5345, 46, 47, 52divmul3d 11037 . . . . . . . . 9 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (((𝐶𝐵) / (𝐶𝐴)) = 𝑤 ↔ (𝐶𝐵) = (𝑤 · (𝐶𝐴))))
5444, 53mpbird 247 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → ((𝐶𝐵) / (𝐶𝐴)) = 𝑤)
55 simp2 1131 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝑤 ∈ (0(,)1))
5654, 55eqeltrd 2850 . . . . . . 7 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1))
5723ad2ant1 1127 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐴 ∈ ℂ)
5833ad2ant1 1127 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐵 ∈ ℂ)
5943ad2ant1 1127 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐶 ∈ ℂ)
6053ad2ant1 1127 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐴𝐵)
6159, 57, 52subne0ad 10605 . . . . . . . . 9 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐶𝐴)
6261necomd 2998 . . . . . . . 8 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐴𝐶)
6357, 58, 59, 60, 62angpieqvdlem 24776 . . . . . . 7 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐶𝐵) / (𝐶𝐴)) ∈ (0(,)1)))
6456, 63mpbird 247 . . . . . 6 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → -((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+)
6563ad2ant1 1127 . . . . . . 7 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → 𝐵𝐶)
661, 57, 58, 59, 60, 65angpieqvdlem2 24777 . . . . . 6 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → (-((𝐶𝐵) / (𝐴𝐵)) ∈ ℝ+ ↔ ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
6764, 66mpbid 222 . . . . 5 ((𝜑𝑤 ∈ (0(,)1) ∧ (𝐶𝐵) = (𝑤 · (𝐶𝐴))) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π)
68673expia 1114 . . . 4 ((𝜑𝑤 ∈ (0(,)1)) → ((𝐶𝐵) = (𝑤 · (𝐶𝐴)) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
6943, 68sylbid 230 . . 3 ((𝜑𝑤 ∈ (0(,)1)) → (𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
7069rexlimdva 3179 . 2 (𝜑 → (∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶)) → ((𝐴𝐵)𝐹(𝐶𝐵)) = π))
7135, 70impbid 202 1 (𝜑 → (((𝐴𝐵)𝐹(𝐶𝐵)) = π ↔ ∃𝑤 ∈ (0(,)1)𝐵 = ((𝑤 · 𝐴) + ((1 − 𝑤) · 𝐶))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wne 2943  wrex 3062  cdif 3720  {csn 4316  cfv 6031  (class class class)co 6793  cmpt2 6795  cc 10136  cr 10137  0cc0 10138  1c1 10139   + caddc 10141   · cmul 10143  cmin 10468  -cneg 10469   / cdiv 10886  +crp 12035  (,)cioo 12380  cim 14046  πcpi 15003  logclog 24522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851  df-log 24524
This theorem is referenced by:  chordthm  24785  chordthmALT  39691
  Copyright terms: Public domain W3C validator