MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem3 Structured version   Visualization version   GIF version

Theorem ang180lem3 24740
Description: Lemma for ang180 24743. Since ang180lem1 24738 shows that 𝑁 is an integer and ang180lem2 24739 shows that 𝑁 is strictly between -2 and 1, it follows that 𝑁 ∈ {-1, 0}, and these two cases correspond to the two possible values for 𝑇. (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypotheses
Ref Expression
ang.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
ang180lem1.2 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
ang180lem1.3 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
Assertion
Ref Expression
ang180lem3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ {-(i · π), (i · π)})
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem ang180lem3
StepHypRef Expression
1 2cn 11283 . . . . . . . . . 10 2 ∈ ℂ
2 picn 24410 . . . . . . . . . 10 π ∈ ℂ
31, 2mulcli 10237 . . . . . . . . 9 (2 · π) ∈ ℂ
4 2ne0 11305 . . . . . . . . 9 2 ≠ 0
53, 1, 4divreci 10962 . . . . . . . 8 ((2 · π) / 2) = ((2 · π) · (1 / 2))
62, 1, 4divcan3i 10963 . . . . . . . 8 ((2 · π) / 2) = π
75, 6eqtr3i 2784 . . . . . . 7 ((2 · π) · (1 / 2)) = π
8 ang180lem1.3 . . . . . . . . . 10 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
9 ang.1 . . . . . . . . . . . . . . . 16 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
10 ang180lem1.2 . . . . . . . . . . . . . . . 16 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
119, 10, 8ang180lem2 24739 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 < 𝑁𝑁 < 1))
1211simprd 482 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 < 1)
13 1e0p1 11744 . . . . . . . . . . . . . 14 1 = (0 + 1)
1412, 13syl6breq 4845 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 < (0 + 1))
159, 10, 8ang180lem1 24738 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ))
1615simpld 477 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℤ)
17 0z 11580 . . . . . . . . . . . . . 14 0 ∈ ℤ
18 zleltp1 11620 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ) → (𝑁 ≤ 0 ↔ 𝑁 < (0 + 1)))
1916, 17, 18sylancl 697 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ≤ 0 ↔ 𝑁 < (0 + 1)))
2014, 19mpbird 247 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ≤ 0)
2120adantr 472 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑁 ≤ 0)
22 zlem1lt 11621 . . . . . . . . . . . . . 14 ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (0 ≤ 𝑁 ↔ (0 − 1) < 𝑁))
2317, 16, 22sylancr 698 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ 𝑁 ↔ (0 − 1) < 𝑁))
24 df-neg 10461 . . . . . . . . . . . . . 14 -1 = (0 − 1)
2524breq1i 4811 . . . . . . . . . . . . 13 (-1 < 𝑁 ↔ (0 − 1) < 𝑁)
2623, 25syl6bbr 278 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ 𝑁 ↔ -1 < 𝑁))
2726biimpar 503 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 0 ≤ 𝑁)
2816zred 11674 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 ∈ ℝ)
2928adantr 472 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑁 ∈ ℝ)
30 0re 10232 . . . . . . . . . . . 12 0 ∈ ℝ
31 letri3 10315 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 0 ∈ ℝ) → (𝑁 = 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁)))
3229, 30, 31sylancl 697 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑁 = 0 ↔ (𝑁 ≤ 0 ∧ 0 ≤ 𝑁)))
3321, 27, 32mpbir2and 995 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑁 = 0)
348, 33syl5eqr 2808 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (((𝑇 / i) / (2 · π)) − (1 / 2)) = 0)
35 ax-1cn 10186 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℂ
36 simp1 1131 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ)
37 subcl 10472 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
3835, 36, 37sylancr 698 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ)
39 simp3 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1)
4039necomd 2987 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴)
41 subeq0 10499 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
4235, 36, 41sylancr 698 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
4342necon3bid 2976 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
4440, 43mpbird 247 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0)
4538, 44reccld 10986 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ∈ ℂ)
4638, 44recne0d 10987 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ≠ 0)
4745, 46logcld 24516 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘(1 / (1 − 𝐴))) ∈ ℂ)
48 subcl 10472 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
4936, 35, 48sylancl 697 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ∈ ℂ)
50 simp2 1132 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 0)
5149, 36, 50divcld 10993 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ∈ ℂ)
52 subeq0 10499 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
5336, 35, 52sylancl 697 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
5453necon3bid 2976 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1))
5539, 54mpbird 247 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ≠ 0)
5649, 36, 55, 50divne0d 11009 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ≠ 0)
5751, 56logcld 24516 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ)
5847, 57addcld 10251 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ)
59 logcl 24514 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
60593adant3 1127 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘𝐴) ∈ ℂ)
6158, 60addcld 10251 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ ℂ)
6210, 61syl5eqel 2843 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ ℂ)
63 ax-icn 10187 . . . . . . . . . . . . . 14 i ∈ ℂ
6463a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ∈ ℂ)
65 ine0 10657 . . . . . . . . . . . . . 14 i ≠ 0
6665a1i 11 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ≠ 0)
6762, 64, 66divcld 10993 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℂ)
683a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈ ℂ)
69 pire 24409 . . . . . . . . . . . . . . 15 π ∈ ℝ
70 pipos 24411 . . . . . . . . . . . . . . 15 0 < π
7169, 70gt0ne0ii 10756 . . . . . . . . . . . . . 14 π ≠ 0
721, 2, 4, 71mulne0i 10862 . . . . . . . . . . . . 13 (2 · π) ≠ 0
7372a1i 11 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ≠ 0)
7467, 68, 73divcld 10993 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈ ℂ)
7574adantr 472 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((𝑇 / i) / (2 · π)) ∈ ℂ)
76 halfcn 11439 . . . . . . . . . 10 (1 / 2) ∈ ℂ
77 subeq0 10499 . . . . . . . . . 10 ((((𝑇 / i) / (2 · π)) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) = 0 ↔ ((𝑇 / i) / (2 · π)) = (1 / 2)))
7875, 76, 77sylancl 697 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) = 0 ↔ ((𝑇 / i) / (2 · π)) = (1 / 2)))
7934, 78mpbid 222 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((𝑇 / i) / (2 · π)) = (1 / 2))
8067adantr 472 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑇 / i) ∈ ℂ)
813a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (2 · π) ∈ ℂ)
8276a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (1 / 2) ∈ ℂ)
8372a1i 11 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (2 · π) ≠ 0)
8480, 81, 82, 83divmuld 11015 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (((𝑇 / i) / (2 · π)) = (1 / 2) ↔ ((2 · π) · (1 / 2)) = (𝑇 / i)))
8579, 84mpbid 222 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((2 · π) · (1 / 2)) = (𝑇 / i))
867, 85syl5reqr 2809 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑇 / i) = π)
8762adantr 472 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑇 ∈ ℂ)
8863a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → i ∈ ℂ)
892a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → π ∈ ℂ)
9065a1i 11 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → i ≠ 0)
9187, 88, 89, 90divmuld 11015 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → ((𝑇 / i) = π ↔ (i · π) = 𝑇))
9286, 91mpbid 222 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (i · π) = 𝑇)
9392eqcomd 2766 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → 𝑇 = (i · π))
9493olcd 407 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 < 𝑁) → (𝑇 = -(i · π) ∨ 𝑇 = (i · π)))
952, 63mulneg1i 10668 . . . . . . 7 (-π · i) = -(π · i)
962, 63mulcomi 10238 . . . . . . . 8 (π · i) = (i · π)
9796negeqi 10466 . . . . . . 7 -(π · i) = -(i · π)
9895, 97eqtri 2782 . . . . . 6 (-π · i) = -(i · π)
9976, 3mulneg1i 10668 . . . . . . . . . 10 (-(1 / 2) · (2 · π)) = -((1 / 2) · (2 · π))
10035, 1, 4divcan1i 10961 . . . . . . . . . . . . 13 ((1 / 2) · 2) = 1
101100oveq1i 6823 . . . . . . . . . . . 12 (((1 / 2) · 2) · π) = (1 · π)
10276, 1, 2mulassi 10241 . . . . . . . . . . . 12 (((1 / 2) · 2) · π) = ((1 / 2) · (2 · π))
1032mulid2i 10235 . . . . . . . . . . . 12 (1 · π) = π
104101, 102, 1033eqtr3i 2790 . . . . . . . . . . 11 ((1 / 2) · (2 · π)) = π
105104negeqi 10466 . . . . . . . . . 10 -((1 / 2) · (2 · π)) = -π
10699, 105eqtri 2782 . . . . . . . . 9 (-(1 / 2) · (2 · π)) = -π
10735, 76negsubdii 10558 . . . . . . . . . . . . 13 -(1 − (1 / 2)) = (-1 + (1 / 2))
108 1mhlfehlf 11443 . . . . . . . . . . . . . 14 (1 − (1 / 2)) = (1 / 2)
109108negeqi 10466 . . . . . . . . . . . . 13 -(1 − (1 / 2)) = -(1 / 2)
110107, 109eqtr3i 2784 . . . . . . . . . . . 12 (-1 + (1 / 2)) = -(1 / 2)
111 simpr 479 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -1 = 𝑁)
112111, 8syl6eq 2810 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -1 = (((𝑇 / i) / (2 · π)) − (1 / 2)))
113112oveq1d 6828 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (-1 + (1 / 2)) = ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)))
114110, 113syl5eqr 2808 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -(1 / 2) = ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)))
115 npcan 10482 . . . . . . . . . . . . 13 ((((𝑇 / i) / (2 · π)) ∈ ℂ ∧ (1 / 2) ∈ ℂ) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)) = ((𝑇 / i) / (2 · π)))
11674, 76, 115sylancl 697 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)) = ((𝑇 / i) / (2 · π)))
117116adantr 472 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) + (1 / 2)) = ((𝑇 / i) / (2 · π)))
118114, 117eqtrd 2794 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -(1 / 2) = ((𝑇 / i) / (2 · π)))
119118oveq1d 6828 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (-(1 / 2) · (2 · π)) = (((𝑇 / i) / (2 · π)) · (2 · π)))
120106, 119syl5eqr 2808 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -π = (((𝑇 / i) / (2 · π)) · (2 · π)))
12167, 68, 73divcan1d 10994 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) · (2 · π)) = (𝑇 / i))
122121adantr 472 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (((𝑇 / i) / (2 · π)) · (2 · π)) = (𝑇 / i))
123120, 122eqtrd 2794 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -π = (𝑇 / i))
124123oveq1d 6828 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (-π · i) = ((𝑇 / i) · i))
12598, 124syl5eqr 2808 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → -(i · π) = ((𝑇 / i) · i))
12662, 64, 66divcan1d 10994 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) · i) = 𝑇)
127126adantr 472 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → ((𝑇 / i) · i) = 𝑇)
128125, 127eqtr2d 2795 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → 𝑇 = -(i · π))
129128orcd 406 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ -1 = 𝑁) → (𝑇 = -(i · π) ∨ 𝑇 = (i · π)))
130 df-2 11271 . . . . . . . 8 2 = (1 + 1)
131130negeqi 10466 . . . . . . 7 -2 = -(1 + 1)
132 negdi2 10531 . . . . . . . 8 ((1 ∈ ℂ ∧ 1 ∈ ℂ) → -(1 + 1) = (-1 − 1))
13335, 35, 132mp2an 710 . . . . . . 7 -(1 + 1) = (-1 − 1)
134131, 133eqtri 2782 . . . . . 6 -2 = (-1 − 1)
13511simpld 477 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 < 𝑁)
136134, 135syl5eqbrr 4840 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 − 1) < 𝑁)
137 neg1z 11605 . . . . . 6 -1 ∈ ℤ
138 zlem1lt 11621 . . . . . 6 ((-1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (-1 ≤ 𝑁 ↔ (-1 − 1) < 𝑁))
139137, 16, 138sylancr 698 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 ≤ 𝑁 ↔ (-1 − 1) < 𝑁))
140136, 139mpbird 247 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -1 ≤ 𝑁)
141 neg1rr 11317 . . . . 5 -1 ∈ ℝ
142 leloe 10316 . . . . 5 ((-1 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (-1 ≤ 𝑁 ↔ (-1 < 𝑁 ∨ -1 = 𝑁)))
143141, 28, 142sylancr 698 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 ≤ 𝑁 ↔ (-1 < 𝑁 ∨ -1 = 𝑁)))
144140, 143mpbid 222 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-1 < 𝑁 ∨ -1 = 𝑁))
14594, 129, 144mpjaodan 862 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 = -(i · π) ∨ 𝑇 = (i · π)))
146 ovex 6841 . . . 4 (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ V
14710, 146eqeltri 2835 . . 3 𝑇 ∈ V
148147elpr 4343 . 2 (𝑇 ∈ {-(i · π), (i · π)} ↔ (𝑇 = -(i · π) ∨ 𝑇 = (i · π)))
149145, 148sylibr 224 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ {-(i · π), (i · π)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  Vcvv 3340  cdif 3712  {csn 4321  {cpr 4323   class class class wbr 4804  cfv 6049  (class class class)co 6813  cmpt2 6815  cc 10126  cr 10127  0cc0 10128  1c1 10129  ici 10130   + caddc 10131   · cmul 10133   < clt 10266  cle 10267  cmin 10458  -cneg 10459   / cdiv 10876  2c2 11262  cz 11569  cim 14037  πcpi 14996  logclog 24500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-inf2 8711  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-pre-sup 10206  ax-addf 10207  ax-mulf 10208
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-supp 7464  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-2o 7730  df-oadd 7733  df-er 7911  df-map 8025  df-pm 8026  df-ixp 8075  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-fsupp 8441  df-fi 8482  df-sup 8513  df-inf 8514  df-oi 8580  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-q 11982  df-rp 12026  df-xneg 12139  df-xadd 12140  df-xmul 12141  df-ioo 12372  df-ioc 12373  df-ico 12374  df-icc 12375  df-fz 12520  df-fzo 12660  df-fl 12787  df-mod 12863  df-seq 12996  df-exp 13055  df-fac 13255  df-bc 13284  df-hash 13312  df-shft 14006  df-cj 14038  df-re 14039  df-im 14040  df-sqrt 14174  df-abs 14175  df-limsup 14401  df-clim 14418  df-rlim 14419  df-sum 14616  df-ef 14997  df-sin 14999  df-cos 15000  df-pi 15002  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-starv 16158  df-sca 16159  df-vsca 16160  df-ip 16161  df-tset 16162  df-ple 16163  df-ds 16166  df-unif 16167  df-hom 16168  df-cco 16169  df-rest 16285  df-topn 16286  df-0g 16304  df-gsum 16305  df-topgen 16306  df-pt 16307  df-prds 16310  df-xrs 16364  df-qtop 16369  df-imas 16370  df-xps 16372  df-mre 16448  df-mrc 16449  df-acs 16451  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-mulg 17742  df-cntz 17950  df-cmn 18395  df-psmet 19940  df-xmet 19941  df-met 19942  df-bl 19943  df-mopn 19944  df-fbas 19945  df-fg 19946  df-cnfld 19949  df-top 20901  df-topon 20918  df-topsp 20939  df-bases 20952  df-cld 21025  df-ntr 21026  df-cls 21027  df-nei 21104  df-lp 21142  df-perf 21143  df-cn 21233  df-cnp 21234  df-haus 21321  df-tx 21567  df-hmeo 21760  df-fil 21851  df-fm 21943  df-flim 21944  df-flf 21945  df-xms 22326  df-ms 22327  df-tms 22328  df-cncf 22882  df-limc 23829  df-dv 23830  df-log 24502
This theorem is referenced by:  ang180lem4  24741
  Copyright terms: Public domain W3C validator