MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ang180lem2 Structured version   Visualization version   GIF version

Theorem ang180lem2 24760
Description: Lemma for ang180 24764. Show that the revolution number 𝑁 is strictly between -2 and 1. Both bounds are established by iterating using the bounds on the imaginary part of the logarithm, logimcl 24536, but the resulting bound gives only 𝑁 ≤ 1 for the upper bound. The case 𝑁 = 1 is not ruled out here, but it is in some sense an "edge case" that can only happen under very specific conditions; in particular we show that all the angle arguments 𝐴, 1 / (1 − 𝐴), (𝐴 − 1) / 𝐴 must lie on the negative real axis, which is a contradiction because clearly if 𝐴 is negative then the other two are positive real. (Contributed by Mario Carneiro, 23-Sep-2014.)
Hypotheses
Ref Expression
ang.1 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
ang180lem1.2 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
ang180lem1.3 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
Assertion
Ref Expression
ang180lem2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 < 𝑁𝑁 < 1))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem ang180lem2
StepHypRef Expression
1 2cn 11303 . . . . . . 7 2 ∈ ℂ
2 1re 10251 . . . . . . . . 9 1 ∈ ℝ
32rehalfcli 11493 . . . . . . . 8 (1 / 2) ∈ ℝ
43recni 10264 . . . . . . 7 (1 / 2) ∈ ℂ
51, 4negsubdii 10578 . . . . . 6 -(2 − (1 / 2)) = (-2 + (1 / 2))
6 4d2e2 11396 . . . . . . . . 9 (4 / 2) = 2
76oveq1i 6824 . . . . . . . 8 ((4 / 2) − (1 / 2)) = (2 − (1 / 2))
8 4cn 11310 . . . . . . . . . 10 4 ∈ ℂ
9 ax-1cn 10206 . . . . . . . . . 10 1 ∈ ℂ
10 2cnne0 11454 . . . . . . . . . 10 (2 ∈ ℂ ∧ 2 ≠ 0)
11 divsubdir 10933 . . . . . . . . . 10 ((4 ∈ ℂ ∧ 1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((4 − 1) / 2) = ((4 / 2) − (1 / 2)))
128, 9, 10, 11mp3an 1573 . . . . . . . . 9 ((4 − 1) / 2) = ((4 / 2) − (1 / 2))
13 3cn 11307 . . . . . . . . . . 11 3 ∈ ℂ
149, 13addcomi 10439 . . . . . . . . . . . 12 (1 + 3) = (3 + 1)
15 df-4 11293 . . . . . . . . . . . 12 4 = (3 + 1)
1614, 15eqtr4i 2785 . . . . . . . . . . 11 (1 + 3) = 4
178, 9, 13, 16subaddrii 10582 . . . . . . . . . 10 (4 − 1) = 3
1817oveq1i 6824 . . . . . . . . 9 ((4 − 1) / 2) = (3 / 2)
1912, 18eqtr3i 2784 . . . . . . . 8 ((4 / 2) − (1 / 2)) = (3 / 2)
207, 19eqtr3i 2784 . . . . . . 7 (2 − (1 / 2)) = (3 / 2)
2120negeqi 10486 . . . . . 6 -(2 − (1 / 2)) = -(3 / 2)
225, 21eqtr3i 2784 . . . . 5 (-2 + (1 / 2)) = -(3 / 2)
23 3re 11306 . . . . . . . . . . . . 13 3 ∈ ℝ
2423rehalfcli 11493 . . . . . . . . . . . 12 (3 / 2) ∈ ℝ
2524recni 10264 . . . . . . . . . . 11 (3 / 2) ∈ ℂ
26 picn 24431 . . . . . . . . . . 11 π ∈ ℂ
2725, 1, 26mulassi 10261 . . . . . . . . . 10 (((3 / 2) · 2) · π) = ((3 / 2) · (2 · π))
28 2ne0 11325 . . . . . . . . . . . 12 2 ≠ 0
2913, 1, 28divcan1i 10981 . . . . . . . . . . 11 ((3 / 2) · 2) = 3
3029oveq1i 6824 . . . . . . . . . 10 (((3 / 2) · 2) · π) = (3 · π)
3127, 30eqtr3i 2784 . . . . . . . . 9 ((3 / 2) · (2 · π)) = (3 · π)
3231negeqi 10486 . . . . . . . 8 -((3 / 2) · (2 · π)) = -(3 · π)
33 2re 11302 . . . . . . . . . . 11 2 ∈ ℝ
34 pire 24430 . . . . . . . . . . 11 π ∈ ℝ
3533, 34remulcli 10266 . . . . . . . . . 10 (2 · π) ∈ ℝ
3635recni 10264 . . . . . . . . 9 (2 · π) ∈ ℂ
3725, 36mulneg1i 10688 . . . . . . . 8 (-(3 / 2) · (2 · π)) = -((3 / 2) · (2 · π))
3813, 26mulneg2i 10689 . . . . . . . 8 (3 · -π) = -(3 · π)
3932, 37, 383eqtr4i 2792 . . . . . . 7 (-(3 / 2) · (2 · π)) = (3 · -π)
4034renegcli 10554 . . . . . . . . . . . 12 -π ∈ ℝ
4133, 40remulcli 10266 . . . . . . . . . . 11 (2 · -π) ∈ ℝ
4241a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · -π) ∈ ℝ)
4340a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π ∈ ℝ)
44 simp1 1131 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ∈ ℂ)
45 subcl 10492 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 − 𝐴) ∈ ℂ)
469, 44, 45sylancr 698 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ∈ ℂ)
47 simp3 1133 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 1)
4847necomd 2987 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ≠ 𝐴)
49 subeq0 10519 . . . . . . . . . . . . . . . . 17 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
509, 44, 49sylancr 698 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) = 0 ↔ 1 = 𝐴))
5150necon3bid 2976 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) ≠ 0 ↔ 1 ≠ 𝐴))
5248, 51mpbird 247 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 − 𝐴) ≠ 0)
5346, 52reccld 11006 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ∈ ℂ)
5446, 52recne0d 11007 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / (1 − 𝐴)) ≠ 0)
5553, 54logcld 24537 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘(1 / (1 − 𝐴))) ∈ ℂ)
56 subcl 10492 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → (𝐴 − 1) ∈ ℂ)
5744, 9, 56sylancl 697 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ∈ ℂ)
58 simp2 1132 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝐴 ≠ 0)
5957, 44, 58divcld 11013 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ∈ ℂ)
60 subeq0 10519 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
6144, 9, 60sylancl 697 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) = 0 ↔ 𝐴 = 1))
6261necon3bid 2976 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) ≠ 0 ↔ 𝐴 ≠ 1))
6347, 62mpbird 247 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝐴 − 1) ≠ 0)
6457, 44, 63, 58divne0d 11029 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝐴 − 1) / 𝐴) ≠ 0)
6559, 64logcld 24537 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℂ)
6655, 65addcld 10271 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℂ)
6766imcld 14154 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℝ)
68 logcl 24535 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
69683adant3 1127 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (log‘𝐴) ∈ ℂ)
7069imcld 14154 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘𝐴)) ∈ ℝ)
7155imcld 14154 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘(1 / (1 − 𝐴)))) ∈ ℝ)
7265imcld 14154 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ∈ ℝ)
7353, 54logimcld 24538 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π < (ℑ‘(log‘(1 / (1 − 𝐴)))) ∧ (ℑ‘(log‘(1 / (1 − 𝐴)))) ≤ π))
7473simpld 477 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π < (ℑ‘(log‘(1 / (1 − 𝐴)))))
7559, 64logimcld 24538 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π < (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ∧ (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ≤ π))
7675simpld 477 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π < (ℑ‘(log‘((𝐴 − 1) / 𝐴))))
7743, 43, 71, 72, 74, 76lt2addd 10862 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π + -π) < ((ℑ‘(log‘(1 / (1 − 𝐴)))) + (ℑ‘(log‘((𝐴 − 1) / 𝐴)))))
78 negpicn 24434 . . . . . . . . . . . . 13 -π ∈ ℂ
79782timesi 11359 . . . . . . . . . . . 12 (2 · -π) = (-π + -π)
8079a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · -π) = (-π + -π))
8155, 65imaddd 14174 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = ((ℑ‘(log‘(1 / (1 − 𝐴)))) + (ℑ‘(log‘((𝐴 − 1) / 𝐴)))))
8277, 80, 813brtr4d 4836 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · -π) < (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))))
83 logimcl 24536 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
84833adant3 1127 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
8584simpld 477 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -π < (ℑ‘(log‘𝐴)))
8642, 43, 67, 70, 82, 85lt2addd 10862 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((2 · -π) + -π) < ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
87 df-3 11292 . . . . . . . . . . . 12 3 = (2 + 1)
8887oveq1i 6824 . . . . . . . . . . 11 (3 · -π) = ((2 + 1) · -π)
891, 9, 78adddiri 10263 . . . . . . . . . . 11 ((2 + 1) · -π) = ((2 · -π) + (1 · -π))
9078mulid2i 10255 . . . . . . . . . . . 12 (1 · -π) = -π
9190oveq2i 6825 . . . . . . . . . . 11 ((2 · -π) + (1 · -π)) = ((2 · -π) + -π)
9288, 89, 913eqtri 2786 . . . . . . . . . 10 (3 · -π) = ((2 · -π) + -π)
9392a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · -π) = ((2 · -π) + -π))
94 ang180lem1.2 . . . . . . . . . . 11 𝑇 = (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))
9594fveq2i 6356 . . . . . . . . . 10 (ℑ‘𝑇) = (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)))
9666, 69imaddd 14174 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴))) = ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
9795, 96syl5eq 2806 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘𝑇) = ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
9886, 93, 973brtr4d 4836 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · -π) < (ℑ‘𝑇))
9966, 69addcld 10271 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) + (log‘𝐴)) ∈ ℂ)
10094, 99syl5eqel 2843 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑇 ∈ ℂ)
101 imval 14066 . . . . . . . . . 10 (𝑇 ∈ ℂ → (ℑ‘𝑇) = (ℜ‘(𝑇 / i)))
102100, 101syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘𝑇) = (ℜ‘(𝑇 / i)))
103 ang.1 . . . . . . . . . . . 12 𝐹 = (𝑥 ∈ (ℂ ∖ {0}), 𝑦 ∈ (ℂ ∖ {0}) ↦ (ℑ‘(log‘(𝑦 / 𝑥))))
104 ang180lem1.3 . . . . . . . . . . . 12 𝑁 = (((𝑇 / i) / (2 · π)) − (1 / 2))
105103, 94, 104ang180lem1 24759 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑁 ∈ ℤ ∧ (𝑇 / i) ∈ ℝ))
106105simprd 482 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℝ)
107106rered 14183 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℜ‘(𝑇 / i)) = (𝑇 / i))
108102, 107eqtrd 2794 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘𝑇) = (𝑇 / i))
10998, 108breqtrd 4830 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · -π) < (𝑇 / i))
11039, 109syl5eqbr 4839 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-(3 / 2) · (2 · π)) < (𝑇 / i))
11124renegcli 10554 . . . . . . . 8 -(3 / 2) ∈ ℝ
112111a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(3 / 2) ∈ ℝ)
11335a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈ ℝ)
114 2pos 11324 . . . . . . . . 9 0 < 2
115 pipos 24432 . . . . . . . . 9 0 < π
11633, 34, 114, 115mulgt0ii 10382 . . . . . . . 8 0 < (2 · π)
117116a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 0 < (2 · π))
118 ltmuldiv 11108 . . . . . . 7 ((-(3 / 2) ∈ ℝ ∧ (𝑇 / i) ∈ ℝ ∧ ((2 · π) ∈ ℝ ∧ 0 < (2 · π))) → ((-(3 / 2) · (2 · π)) < (𝑇 / i) ↔ -(3 / 2) < ((𝑇 / i) / (2 · π))))
119112, 106, 113, 117, 118syl112anc 1481 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((-(3 / 2) · (2 · π)) < (𝑇 / i) ↔ -(3 / 2) < ((𝑇 / i) / (2 · π))))
120110, 119mpbid 222 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(3 / 2) < ((𝑇 / i) / (2 · π)))
12122, 120syl5eqbr 4839 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 + (1 / 2)) < ((𝑇 / i) / (2 · π)))
12233renegcli 10554 . . . . . 6 -2 ∈ ℝ
123122a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 ∈ ℝ)
1243a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 / 2) ∈ ℝ)
12535, 116gt0ne0ii 10776 . . . . . . 7 (2 · π) ≠ 0
126125a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ≠ 0)
127106, 113, 126redivcld 11065 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) ∈ ℝ)
128123, 124, 127ltaddsubd 10839 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((-2 + (1 / 2)) < ((𝑇 / i) / (2 · π)) ↔ -2 < (((𝑇 / i) / (2 · π)) − (1 / 2))))
129121, 128mpbid 222 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 < (((𝑇 / i) / (2 · π)) − (1 / 2)))
130129, 104syl6breqr 4846 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -2 < 𝑁)
13134a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → π ∈ ℝ)
13273simprd 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘(1 / (1 − 𝐴)))) ≤ π)
13375simprd 482 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘((𝐴 − 1) / 𝐴))) ≤ π)
13471, 72, 131, 131, 132, 133le2addd 10858 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((ℑ‘(log‘(1 / (1 − 𝐴)))) + (ℑ‘(log‘((𝐴 − 1) / 𝐴)))) ≤ (π + π))
135262timesi 11359 . . . . . . . . . . . 12 (2 · π) = (π + π)
136135a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) = (π + π))
137134, 81, 1363brtr4d 4836 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ≤ (2 · π))
13884simprd 482 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘𝐴)) ≤ π)
13967, 70, 113, 131, 137, 138le2addd 10858 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))) ≤ ((2 · π) + π))
140108, 97eqtr3d 2796 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) = ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴))))
14187oveq1i 6824 . . . . . . . . . . 11 (3 · π) = ((2 + 1) · π)
1421, 9, 26adddiri 10263 . . . . . . . . . . 11 ((2 + 1) · π) = ((2 · π) + (1 · π))
14326mulid2i 10255 . . . . . . . . . . . 12 (1 · π) = π
144143oveq2i 6825 . . . . . . . . . . 11 ((2 · π) + (1 · π)) = ((2 · π) + π)
145141, 142, 1443eqtri 2786 . . . . . . . . . 10 (3 · π) = ((2 · π) + π)
146145a1i 11 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · π) = ((2 · π) + π))
147139, 140, 1463brtr4d 4836 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ≤ (3 · π))
14836subid1i 10565 . . . . . . . . . 10 ((2 · π) − 0) = (2 · π)
149148, 125eqnetri 3002 . . . . . . . . 9 ((2 · π) − 0) ≠ 0
150 negsub 10541 . . . . . . . . . . . . . . . . . . . 20 ((1 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (1 + -𝐴) = (1 − 𝐴))
1519, 44, 150sylancr 698 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (1 + -𝐴) = (1 − 𝐴))
152151adantr 472 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 + -𝐴) = (1 − 𝐴))
153 1rp 12049 . . . . . . . . . . . . . . . . . . 19 1 ∈ ℝ+
154146, 140oveq12d 6832 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((3 · π) − (𝑇 / i)) = (((2 · π) + π) − ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴)))))
15536a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (2 · π) ∈ ℂ)
15626a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → π ∈ ℂ)
15767recnd 10280 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℂ)
15870recnd 10280 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (ℑ‘(log‘𝐴)) ∈ ℂ)
159155, 156, 157, 158addsub4d 10651 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((2 · π) + π) − ((ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) + (ℑ‘(log‘𝐴)))) = (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))))
160154, 159eqtrd 2794 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((3 · π) − (𝑇 / i)) = (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))))
161160adantr 472 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((3 · π) − (𝑇 / i)) = (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))))
16223, 34remulcli 10266 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (3 · π) ∈ ℝ
163162recni 10264 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (3 · π) ∈ ℂ
164 ax-icn 10207 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 i ∈ ℂ
165164a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ∈ ℂ)
166 ine0 10677 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 i ≠ 0
167166a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → i ≠ 0)
168100, 165, 167divcld 11013 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) ∈ ℂ)
169 subeq0 10519 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((3 · π) ∈ ℂ ∧ (𝑇 / i) ∈ ℂ) → (((3 · π) − (𝑇 / i)) = 0 ↔ (3 · π) = (𝑇 / i)))
170163, 168, 169sylancr 698 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((3 · π) − (𝑇 / i)) = 0 ↔ (3 · π) = (𝑇 / i)))
171170biimpar 503 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((3 · π) − (𝑇 / i)) = 0)
172161, 171eqtr3d 2796 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0)
173 resubcl 10557 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((2 · π) ∈ ℝ ∧ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℝ) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ∈ ℝ)
17435, 67, 173sylancr 698 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ∈ ℝ)
175 subge0 10753 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((2 · π) ∈ ℝ ∧ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ∈ ℝ) → (0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ↔ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ≤ (2 · π)))
17635, 67, 175sylancr 698 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ↔ (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) ≤ (2 · π)))
177137, 176mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))))
178 resubcl 10557 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (π − (ℑ‘(log‘𝐴))) ∈ ℝ)
17934, 70, 178sylancr 698 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (π − (ℑ‘(log‘𝐴))) ∈ ℝ)
180 subge0 10753 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (0 ≤ (π − (ℑ‘(log‘𝐴))) ↔ (ℑ‘(log‘𝐴)) ≤ π))
18134, 70, 180sylancr 698 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (0 ≤ (π − (ℑ‘(log‘𝐴))) ↔ (ℑ‘(log‘𝐴)) ≤ π))
182138, 181mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 0 ≤ (π − (ℑ‘(log‘𝐴))))
183 add20 10752 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) ∈ ℝ ∧ 0 ≤ ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))))) ∧ ((π − (ℑ‘(log‘𝐴))) ∈ ℝ ∧ 0 ≤ (π − (ℑ‘(log‘𝐴))))) → ((((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0 ↔ (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0)))
184174, 177, 179, 182, 183syl22anc 1478 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0 ↔ (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0)))
185184biimpa 502 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) + (π − (ℑ‘(log‘𝐴)))) = 0) → (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0))
186172, 185syldan 488 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0 ∧ (π − (ℑ‘(log‘𝐴))) = 0))
187186simprd 482 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (π − (ℑ‘(log‘𝐴))) = 0)
188158adantr 472 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (ℑ‘(log‘𝐴)) ∈ ℂ)
189 subeq0 10519 . . . . . . . . . . . . . . . . . . . . . . 23 ((π ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → ((π − (ℑ‘(log‘𝐴))) = 0 ↔ π = (ℑ‘(log‘𝐴))))
19026, 188, 189sylancr 698 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((π − (ℑ‘(log‘𝐴))) = 0 ↔ π = (ℑ‘(log‘𝐴))))
191187, 190mpbid 222 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → π = (ℑ‘(log‘𝐴)))
192191eqcomd 2766 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (ℑ‘(log‘𝐴)) = π)
193 lognegb 24556 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
1941933adant3 1127 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
195194adantr 472 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (-𝐴 ∈ ℝ+ ↔ (ℑ‘(log‘𝐴)) = π))
196192, 195mpbird 247 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → -𝐴 ∈ ℝ+)
197 rpaddcl 12067 . . . . . . . . . . . . . . . . . . 19 ((1 ∈ ℝ+ ∧ -𝐴 ∈ ℝ+) → (1 + -𝐴) ∈ ℝ+)
198153, 196, 197sylancr 698 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 + -𝐴) ∈ ℝ+)
199152, 198eqeltrrd 2840 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 − 𝐴) ∈ ℝ+)
200199rpreccld 12095 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (1 / (1 − 𝐴)) ∈ ℝ+)
201200relogcld 24589 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (log‘(1 / (1 − 𝐴))) ∈ ℝ)
202 negsubdi2 10552 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → -(𝐴 − 1) = (1 − 𝐴))
20344, 9, 202sylancl 697 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → -(𝐴 − 1) = (1 − 𝐴))
204203oveq1d 6829 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-(𝐴 − 1) / -𝐴) = ((1 − 𝐴) / -𝐴))
20557, 44, 58div2negd 11028 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-(𝐴 − 1) / -𝐴) = ((𝐴 − 1) / 𝐴))
206204, 205eqtr3d 2796 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((1 − 𝐴) / -𝐴) = ((𝐴 − 1) / 𝐴))
207206adantr 472 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((1 − 𝐴) / -𝐴) = ((𝐴 − 1) / 𝐴))
208199, 196rpdivcld 12102 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((1 − 𝐴) / -𝐴) ∈ ℝ+)
209207, 208eqeltrrd 2840 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((𝐴 − 1) / 𝐴) ∈ ℝ+)
210209relogcld 24589 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (log‘((𝐴 − 1) / 𝐴)) ∈ ℝ)
211201, 210readdcld 10281 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))) ∈ ℝ)
212211reim0d 14184 . . . . . . . . . . . . 13 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴)))) = 0)
213212oveq2d 6830 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = ((2 · π) − 0))
214186simpld 477 . . . . . . . . . . . 12 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((2 · π) − (ℑ‘((log‘(1 / (1 − 𝐴))) + (log‘((𝐴 − 1) / 𝐴))))) = 0)
215213, 214eqtr3d 2796 . . . . . . . . . . 11 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) ∧ (3 · π) = (𝑇 / i)) → ((2 · π) − 0) = 0)
216215ex 449 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((3 · π) = (𝑇 / i) → ((2 · π) − 0) = 0))
217216necon3d 2953 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((2 · π) − 0) ≠ 0 → (3 · π) ≠ (𝑇 / i)))
218149, 217mpi 20 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 · π) ≠ (𝑇 / i))
219 ltlen 10350 . . . . . . . . 9 (((𝑇 / i) ∈ ℝ ∧ (3 · π) ∈ ℝ) → ((𝑇 / i) < (3 · π) ↔ ((𝑇 / i) ≤ (3 · π) ∧ (3 · π) ≠ (𝑇 / i))))
220106, 162, 219sylancl 697 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) < (3 · π) ↔ ((𝑇 / i) ≤ (3 · π) ∧ (3 · π) ≠ (𝑇 / i))))
221147, 218, 220mpbir2and 995 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) < (3 · π))
222221, 31syl6breqr 4846 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (𝑇 / i) < ((3 / 2) · (2 · π)))
22324a1i 11 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (3 / 2) ∈ ℝ)
224 ltdivmul2 11112 . . . . . . 7 (((𝑇 / i) ∈ ℝ ∧ (3 / 2) ∈ ℝ ∧ ((2 · π) ∈ ℝ ∧ 0 < (2 · π))) → (((𝑇 / i) / (2 · π)) < (3 / 2) ↔ (𝑇 / i) < ((3 / 2) · (2 · π))))
225106, 223, 113, 117, 224syl112anc 1481 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) < (3 / 2) ↔ (𝑇 / i) < ((3 / 2) · (2 · π))))
226222, 225mpbird 247 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) < (3 / 2))
22787oveq1i 6824 . . . . . 6 (3 / 2) = ((2 + 1) / 2)
2281, 9, 1, 28divdiri 10994 . . . . . 6 ((2 + 1) / 2) = ((2 / 2) + (1 / 2))
229 2div2e1 11362 . . . . . . 7 (2 / 2) = 1
230229oveq1i 6824 . . . . . 6 ((2 / 2) + (1 / 2)) = (1 + (1 / 2))
231227, 228, 2303eqtri 2786 . . . . 5 (3 / 2) = (1 + (1 / 2))
232226, 231syl6breq 4845 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((𝑇 / i) / (2 · π)) < (1 + (1 / 2)))
2332a1i 11 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 1 ∈ ℝ)
234127, 124, 233ltsubaddd 10835 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → ((((𝑇 / i) / (2 · π)) − (1 / 2)) < 1 ↔ ((𝑇 / i) / (2 · π)) < (1 + (1 / 2))))
235232, 234mpbird 247 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (((𝑇 / i) / (2 · π)) − (1 / 2)) < 1)
236104, 235syl5eqbr 4839 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → 𝑁 < 1)
237130, 236jca 555 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝐴 ≠ 1) → (-2 < 𝑁𝑁 < 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  cdif 3712  {csn 4321   class class class wbr 4804  cfv 6049  (class class class)co 6814  cmpt2 6816  cc 10146  cr 10147  0cc0 10148  1c1 10149  ici 10150   + caddc 10151   · cmul 10153   < clt 10286  cle 10287  cmin 10478  -cneg 10479   / cdiv 10896  2c2 11282  3c3 11283  4c4 11284  cz 11589  +crp 12045  cre 14056  cim 14057  πcpi 15016  logclog 24521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-inf2 8713  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226  ax-addf 10227  ax-mulf 10228
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-se 5226  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-isom 6058  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-of 7063  df-om 7232  df-1st 7334  df-2nd 7335  df-supp 7465  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-2o 7731  df-oadd 7734  df-er 7913  df-map 8027  df-pm 8028  df-ixp 8077  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-fsupp 8443  df-fi 8484  df-sup 8515  df-inf 8516  df-oi 8582  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-4 11293  df-5 11294  df-6 11295  df-7 11296  df-8 11297  df-9 11298  df-n0 11505  df-z 11590  df-dec 11706  df-uz 11900  df-q 12002  df-rp 12046  df-xneg 12159  df-xadd 12160  df-xmul 12161  df-ioo 12392  df-ioc 12393  df-ico 12394  df-icc 12395  df-fz 12540  df-fzo 12680  df-fl 12807  df-mod 12883  df-seq 13016  df-exp 13075  df-fac 13275  df-bc 13304  df-hash 13332  df-shft 14026  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-limsup 14421  df-clim 14438  df-rlim 14439  df-sum 14636  df-ef 15017  df-sin 15019  df-cos 15020  df-pi 15022  df-struct 16081  df-ndx 16082  df-slot 16083  df-base 16085  df-sets 16086  df-ress 16087  df-plusg 16176  df-mulr 16177  df-starv 16178  df-sca 16179  df-vsca 16180  df-ip 16181  df-tset 16182  df-ple 16183  df-ds 16186  df-unif 16187  df-hom 16188  df-cco 16189  df-rest 16305  df-topn 16306  df-0g 16324  df-gsum 16325  df-topgen 16326  df-pt 16327  df-prds 16330  df-xrs 16384  df-qtop 16389  df-imas 16390  df-xps 16392  df-mre 16468  df-mrc 16469  df-acs 16471  df-mgm 17463  df-sgrp 17505  df-mnd 17516  df-submnd 17557  df-mulg 17762  df-cntz 17970  df-cmn 18415  df-psmet 19960  df-xmet 19961  df-met 19962  df-bl 19963  df-mopn 19964  df-fbas 19965  df-fg 19966  df-cnfld 19969  df-top 20921  df-topon 20938  df-topsp 20959  df-bases 20972  df-cld 21045  df-ntr 21046  df-cls 21047  df-nei 21124  df-lp 21162  df-perf 21163  df-cn 21253  df-cnp 21254  df-haus 21341  df-tx 21587  df-hmeo 21780  df-fil 21871  df-fm 21963  df-flim 21964  df-flf 21965  df-xms 22346  df-ms 22347  df-tms 22348  df-cncf 22902  df-limc 23849  df-dv 23850  df-log 24523
This theorem is referenced by:  ang180lem3  24761
  Copyright terms: Public domain W3C validator