![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancri | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to right of consequent. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
ancri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ancri | ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
3 | 1, 2 | jca 553 | 1 ⊢ (𝜑 → (𝜓 ∧ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: bamalip 2615 gencbvex 3281 eusv2nf 4894 issref 5544 trsuc 5848 fo00 6210 eqfnov2 6809 caovmo 6913 bropopvvv 7300 tz7.48lem 7581 tz7.48-1 7583 oewordri 7717 epfrs 8645 ordpipq 9802 ltexprlem4 9899 xrinfmsslem 12176 hashfzp1 13256 swrdccat3a 13540 dfgcd2 15310 catpropd 16416 idmhm 17391 symg2bas 17864 psgndiflemB 19994 pmatcollpw2lem 20630 icccvx 22796 uspgr1v1eop 26186 esumcst 30253 ddemeas 30427 bnj600 31115 bnj852 31117 dfpo2 31771 bj-csbsnlem 33023 bj-ismooredr2 33190 nzss 38833 iotasbc 38937 wallispilem3 40602 nnsum3primes4 42001 idmgmhm 42113 |
Copyright terms: Public domain | W3C validator |