MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ancomst Structured version   Visualization version   GIF version

Theorem ancomst 467
Description: Closed form of ancoms 468. (Contributed by Alan Sare, 31-Dec-2011.)
Assertion
Ref Expression
ancomst (((𝜑𝜓) → 𝜒) ↔ ((𝜓𝜑) → 𝜒))

Proof of Theorem ancomst
StepHypRef Expression
1 ancom 465 . 2 ((𝜑𝜓) ↔ (𝜓𝜑))
21imbi1i 338 1 (((𝜑𝜓) → 𝜒) ↔ ((𝜓𝜑) → 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385
This theorem is referenced by:  sbcom2  2473  ralcomf  3125  fvn0ssdmfun  6390  ovolgelb  23294  itg2leub  23546  nmoubi  27755  wl-sbcom2d  33474  ifpidg  38153  undmrnresiss  38227  ntrneiiso  38706  expcomdg  39023
  Copyright terms: Public domain W3C validator