![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancom2s | Structured version Visualization version GIF version |
Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
ancom2s | ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.22 464 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜓 ∧ 𝜒)) | |
2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylan2 490 | 1 ⊢ ((𝜑 ∧ (𝜒 ∧ 𝜓)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: an42s 887 sotr2 5093 somin2 5566 f1elima 6560 f1imaeq 6562 soisoi 6618 isosolem 6637 xpexr2 7149 2ndconst 7311 smoword 7508 unxpdomlem3 8207 fiming 8445 fiinfg 8446 sornom 9137 fin1a2s 9274 mulsub 10511 leltadd 10550 ltord1 10592 leord1 10593 eqord1 10594 divmul24 10767 expcan 12953 ltexp2 12954 fsum 14495 fprod 14715 isprm5 15466 ramub 15764 setcinv 16787 grpidpropd 17308 gsumpropd2lem 17320 cmnpropd 18248 unitpropd 18743 lidl1el 19266 gsumcom3 20253 1marepvmarrepid 20429 1marepvsma1 20437 ordtrest2 21056 filuni 21736 haustsms2 21987 blcomps 22245 blcom 22246 metnrmlem3 22711 cnmpt2pc 22774 icoopnst 22785 icccvx 22796 equivcfil 23143 volcn 23420 dvmptfsum 23783 cxple 24486 cxple3 24492 uhgr2edg 26145 lnosub 27742 chirredlem2 29378 bhmafibid2 29773 metider 30065 ordtrest2NEW 30097 fsum2dsub 30813 finxpreclem2 33357 fin2so 33526 cover2 33638 filbcmb 33665 isdrngo2 33887 crngohomfo 33935 unichnidl 33960 cdleme50eq 36146 dvhvaddcomN 36702 ismrc 37581 |
Copyright terms: Public domain | W3C validator |