![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancli | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to left of consequent. (Contributed by NM, 12-Aug-1993.) |
Ref | Expression |
---|---|
ancli.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
ancli | ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
2 | ancli.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | jca 555 | 1 ⊢ (𝜑 → (𝜑 ∧ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: pm4.45im 586 barbari 2705 cesaro 2711 camestros 2712 calemos 2722 n0rex 4078 swopo 5197 xpdifid 5720 xpima 5734 elrnrexdm 6526 ixpsnf1o 8114 php4 8312 ssnnfi 8344 inf3lem6 8703 rankuni 8899 cardprclem 8995 nqpr 10028 letrp1 11057 p1le 11058 sup2 11171 peano2uz2 11657 uzind 11661 uzid 11894 qreccl 12001 xrsupsslem 12330 supxrunb1 12342 faclbnd4lem4 13277 cshweqdifid 13766 fprodsplit1f 14920 idghm 17876 efgred 18361 srgbinom 18745 subrgid 18984 lmodfopne 19103 m1detdiag 20605 1elcpmat 20722 phtpcer 22995 pntrlog2bndlem2 25466 wlkres 26777 clwwlkf 27176 hvpncan 28205 chsupsn 28581 ssjo 28615 elim2ifim 29671 rrhre 30374 pmeasadd 30696 bnj596 31123 bnj1209 31174 bnj996 31332 bnj1110 31357 bnj1189 31384 arg-ax 32721 bj-mo3OLD 33138 unirep 33820 rp-isfinite6 38366 clsk1indlem2 38842 ntrclsss 38863 clsneiel1 38908 monoords 40010 fsumsplit1 40307 fmul01 40315 fmuldfeqlem1 40317 fmuldfeq 40318 fmul01lt1lem1 40319 icccncfext 40603 iblspltprt 40692 stoweidlem3 40723 stoweidlem17 40737 stoweidlem19 40739 stoweidlem20 40740 stoweidlem23 40743 stirlinglem15 40808 fourierdlem16 40843 fourierdlem21 40848 fourierdlem72 40898 fourierdlem89 40915 fourierdlem90 40916 fourierdlem91 40917 hoidmvlelem4 41318 salpreimalegt 41426 zeoALTV 42091 c0mgm 42419 c0mhm 42420 2zrngnmrid 42460 mndpsuppss 42662 linc0scn0 42722 |
Copyright terms: Public domain | W3C validator |