![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ancld | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 15-Aug-1994.) (Proof shortened by Wolf Lammen, 1-Nov-2012.) |
Ref | Expression |
---|---|
ancld.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ancld | ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idd 24 | . 2 ⊢ (𝜑 → (𝜓 → 𝜓)) | |
2 | ancld.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
3 | 1, 2 | jcad 554 | 1 ⊢ (𝜑 → (𝜓 → (𝜓 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: equvinv 2003 mo2v 2505 mopick2 2569 2eu6 2587 cgsexg 3269 cgsex2g 3270 cgsex4g 3271 reximdva0 3966 difsn 4360 preq12b 4413 elres 5470 relssres 5472 ordtr2 5806 elunirn 6549 fnoprabg 6803 tz7.49 7585 omord 7693 ficard 9425 fpwwe2lem12 9501 1idpr 9889 xrsupsslem 12175 xrinfmsslem 12176 fzospliti 12539 sqrt2irr 15023 algcvga 15339 prmind2 15445 infpn2 15664 grpinveu 17503 1stcrest 21304 fgss2 21725 fgcl 21729 filufint 21771 metrest 22376 reconnlem2 22677 plydivex 24097 ftalem3 24846 chtub 24982 lgsqrmodndvds 25123 2sqlem10 25198 dchrisum0flb 25244 pntpbnd1 25320 clwwlkn1loopb 27006 2pthfrgrrn2 27263 grpoidinvlem3 27488 grpoinveu 27501 elim2ifim 29490 iocinif 29671 tpr2rico 30086 bnj168 30924 dfon2lem8 31819 dftrpred3g 31857 nolesgn2o 31949 nosupbnd1lem4 31982 nn0prpwlem 32442 voliunnfl 33583 dalem20 35297 elpaddn0 35404 cdleme25a 35958 cdleme29ex 35979 cdlemefr29exN 36007 dibglbN 36772 dihlsscpre 36840 lcfl7N 37107 mapdh9a 37396 mapdh9aOLDN 37397 hdmap11lem2 37451 ax6e2eq 39090 eliin2f 39601 |
Copyright terms: Public domain | W3C validator |