![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anc2li | Structured version Visualization version GIF version |
Description: Deduction conjoining antecedent to left of consequent in nested implication. (Contributed by NM, 10-Aug-1994.) (Proof shortened by Wolf Lammen, 7-Dec-2012.) |
Ref | Expression |
---|---|
anc2li.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
anc2li | ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anc2li.1 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
3 | 1, 2 | jctild 567 | 1 ⊢ (𝜑 → (𝜓 → (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: imdistani 728 pwpw0 4490 sssn 4504 pwsnALT 4582 wfisg 5877 ordtr2 5930 tfis 7221 oeordi 7839 unblem3 8382 trcl 8780 clwlkclwwlkfo 27154 h1datomi 28771 ballotlemfc0 30885 ballotlemfcc 30886 frinsg 32073 dfrdg4 32386 bj-sbsb 33153 clsk1indlem3 38862 sbiota1 39156 |
Copyright terms: Public domain | W3C validator |