![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anandirs | Structured version Visualization version GIF version |
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
Ref | Expression |
---|---|
anandirs.1 | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) |
Ref | Expression |
---|---|
anandirs | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anandirs.1 | . . 3 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜒)) → 𝜏) | |
2 | 1 | an4s 886 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜒)) → 𝜏) |
3 | 2 | anabsan2 880 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: 3impdir 1422 oawordri 7675 omwordri 7697 oeordsuc 7719 phplem4 8183 muladd 10500 iccshftr 12344 iccshftl 12346 iccdil 12348 icccntr 12350 fzaddel 12413 fzsubel 12415 modadd1 12747 modmul1 12763 mulexp 12939 faclbnd5 13125 upxp 21474 uptx 21476 brbtwn2 25830 colinearalg 25835 eleesub 25836 eleesubd 25837 axcgrrflx 25839 axcgrid 25841 axsegconlem2 25843 phoeqi 27841 hial2eq2 28092 spansncvi 28639 5oalem3 28643 5oalem5 28645 hoscl 28732 hoeq1 28817 hoeq2 28818 hmops 29007 leopadd 29119 mdsymlem5 29394 lineintmo 32389 matunitlindflem1 33535 heicant 33574 ftc1anclem3 33617 ftc1anclem4 33618 ftc1anclem6 33620 ftc1anclem7 33621 ftc1anclem8 33622 ftc1anc 33623 |
Copyright terms: Public domain | W3C validator |