![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > anabsan2 | Structured version Visualization version GIF version |
Description: Absorption of antecedent with conjunction. (Contributed by NM, 10-May-2004.) |
Ref | Expression |
---|---|
anabsan2.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) |
Ref | Expression |
---|---|
anabsan2 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabsan2.1 | . . 3 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜓)) → 𝜒) | |
2 | 1 | an12s 878 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜓)) → 𝜒) |
3 | 2 | anabss7 897 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: anabss3 899 anandirs 909 fvreseq 6434 funcestrcsetclem7 16908 funcsetcestrclem7 16923 lmodvsdi 19009 lmodvsdir 19010 lmodvsass 19011 lss0cl 19070 phlpropd 20123 chpdmatlem3 20768 mbfimasn 23521 slmdvsdi 29998 slmdvsdir 29999 slmdvsass 30000 metider 30167 funcringcsetcALTV2lem7 42469 funcringcsetclem7ALTV 42492 |
Copyright terms: Public domain | W3C validator |