![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an42s | Structured version Visualization version GIF version |
Description: Inference rearranging 4 conjuncts in antecedent. (Contributed by NM, 10-Aug-1995.) |
Ref | Expression |
---|---|
an41r3s.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) |
Ref | Expression |
---|---|
an42s | ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an41r3s.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) → 𝜏) | |
2 | 1 | an4s 886 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) → 𝜏) |
3 | 2 | ancom2s 861 | 1 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜃 ∧ 𝜓)) → 𝜏) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: nnmsucr 7750 ecopoveq 7891 sbthlem9 8119 mulclsr 9943 mulasssr 9949 distrsr 9950 ltsosr 9953 axmulf 10005 axmulass 10016 axdistr 10017 subadd4 10363 mulsub 10511 mgmidmo 17306 tgcl 20821 bwth 21261 pntibndlem2 25325 hosubadd4 28801 fdc 33671 isdrngo2 33887 unichnidl 33960 acongtr 37862 |
Copyright terms: Public domain | W3C validator |