![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an4 | Structured version Visualization version GIF version |
Description: Rearrangement of 4 conjuncts. (Contributed by NM, 10-Jul-1994.) |
Ref | Expression |
---|---|
an4 | ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an12 873 | . . 3 ⊢ ((𝜓 ∧ (𝜒 ∧ 𝜃)) ↔ (𝜒 ∧ (𝜓 ∧ 𝜃))) | |
2 | 1 | anbi2i 732 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃))) ↔ (𝜑 ∧ (𝜒 ∧ (𝜓 ∧ 𝜃)))) |
3 | anass 684 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜓 ∧ (𝜒 ∧ 𝜃)))) | |
4 | anass 684 | . 2 ⊢ (((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃)) ↔ (𝜑 ∧ (𝜒 ∧ (𝜓 ∧ 𝜃)))) | |
5 | 2, 3, 4 | 3bitr4i 292 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ (𝜒 ∧ 𝜃)) ↔ ((𝜑 ∧ 𝜒) ∧ (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: an42 901 an4s 904 anandi 906 anandir 907 an6 1555 an33rean 1593 reean 3242 reu2 3533 rmo4 3538 rmo3 3667 disjiun 4790 inxp 5408 xp11 5725 fununi 6123 fun 6225 resoprab2 6920 sorpsscmpl 7111 xporderlem 7454 poxp 7455 dfac5lem1 9134 zorn2lem6 9513 cju 11206 ixxin 12383 elfzo2 12665 xpcogend 13912 summo 14645 prodmo 14863 dfiso2 16631 issubmd 17548 gsumval3eu 18503 dvdsrtr 18850 isirred2 18899 lspsolvlem 19342 domnmuln0 19498 abvn0b 19502 pf1ind 19919 unocv 20224 ordtrest2lem 21207 lmmo 21384 ptbasin 21580 txbasval 21609 txcnp 21623 txlm 21651 tx1stc 21653 tx2ndc 21654 isfild 21861 txflf 22009 isclmp 23095 mbfi1flimlem 23686 iblcnlem1 23751 iblre 23757 iblcn 23762 logfaclbnd 25144 axcontlem4 26044 axcontlem7 26047 ocsh 28449 pjhthmo 28468 5oalem6 28825 cvnbtwn4 29455 superpos 29520 cdj3i 29607 rmo3f 29641 rmo4fOLD 29642 smatrcl 30169 ordtrest2NEWlem 30275 dfpo2 31950 poseq 32057 lineext 32487 outsideoftr 32540 hilbert1.2 32566 lineintmo 32568 neibastop1 32658 bj-inrab 33227 isbasisrelowllem1 33512 isbasisrelowllem2 33513 ptrest 33719 poimirlem26 33746 ismblfin 33761 unirep 33818 inixp 33834 ablo4pnp 33990 keridl 34142 ispridlc 34180 anan 34323 br1cosscnvxrn 34545 prtlem70 34643 lcvbr3 34811 cvrnbtwn4 35067 linepsubN 35539 pmapsub 35555 pmapjoin 35639 ltrnu 35908 diblsmopel 36960 pell1234qrmulcl 37919 isdomn3 38282 ifpan23 38304 ifpidg 38336 ifpbibib 38355 uneqsn 38821 2reu1 41690 2reu4a 41693 |
Copyright terms: Public domain | W3C validator |