MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  an31s Structured version   Visualization version   GIF version

Theorem an31s 865
Description: Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006.)
Hypothesis
Ref Expression
an32s.1 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
an31s (((𝜒𝜓) ∧ 𝜑) → 𝜃)

Proof of Theorem an31s
StepHypRef Expression
1 an32s.1 . . . 4 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
21exp31 629 . . 3 (𝜑 → (𝜓 → (𝜒𝜃)))
32com13 88 . 2 (𝜒 → (𝜓 → (𝜑𝜃)))
43imp31 447 1 (((𝜒𝜓) ∧ 𝜑) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 197  df-an 385
This theorem is referenced by:  icoopnst  22785  grpoidinvlem3  27488  kbop  28940  frmin  31867  bddiblnc  33610
  Copyright terms: Public domain W3C validator