![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an12s | Structured version Visualization version GIF version |
Description: Swap two conjuncts in antecedent. The label suffix "s" means that an12 873 is combined with syl 17 (or a variant). (Contributed by NM, 13-Mar-1996.) |
Ref | Expression |
---|---|
an12s.1 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) |
Ref | Expression |
---|---|
an12s | ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an12 873 | . 2 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
2 | an12s.1 | . 2 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝜃) | |
3 | 1, 2 | sylbi 207 | 1 ⊢ ((𝜓 ∧ (𝜑 ∧ 𝜒)) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: anabsan2 898 1stconst 7434 2ndconst 7435 oecl 7788 oaass 7812 odi 7830 oen0 7837 oeworde 7844 ltexprlem4 10073 iccshftr 12519 iccshftl 12521 iccdil 12523 icccntr 12525 ndvdsadd 15356 eulerthlem2 15709 neips 21139 tx1stc 21675 filuni 21910 ufldom 21987 isch3 28428 unoplin 29109 hmoplin 29131 adjlnop 29275 chirredlem2 29580 btwnconn1lem12 32532 btwnconn1 32535 finxpreclem2 33556 poimirlem25 33765 mblfinlem4 33780 iscringd 34128 unichnidl 34161 |
Copyright terms: Public domain | W3C validator |