![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > an12 | Structured version Visualization version GIF version |
Description: Swap two conjuncts. Note that the first digit (1) in the label refers to the outer conjunct position, and the next digit (2) to the inner conjunct position. (Contributed by NM, 12-Mar-1995.) |
Ref | Expression |
---|---|
an12 | ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 465 | . . 3 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
2 | 1 | anbi1i 731 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((𝜓 ∧ 𝜑) ∧ 𝜒)) |
3 | anass 682 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓 ∧ 𝜒))) | |
4 | anass 682 | . 2 ⊢ (((𝜓 ∧ 𝜑) ∧ 𝜒) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) | |
5 | 2, 3, 4 | 3bitr3i 290 | 1 ⊢ ((𝜑 ∧ (𝜓 ∧ 𝜒)) ↔ (𝜓 ∧ (𝜑 ∧ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 |
This theorem is referenced by: an32 856 an13 857 an12s 860 an4 882 ceqsrexv 3367 rmoan 3439 2reuswap 3443 reuind 3444 sbccomlem 3541 elunirab 4480 axsep 4813 reuxfr2d 4921 opeliunxp 5204 elres 5470 resoprab 6798 elrnmpt2res 6816 ov6g 6840 opabex3d 7187 opabex3 7188 dfrecs3 7514 oeeu 7728 xpassen 8095 omxpenlem 8102 dfac5lem2 8985 ltexprlem4 9899 rexuz2 11777 2clim 14347 divalglem10 15172 bitsmod 15205 isssc 16527 eldmcoa 16762 issubrg 18828 isbasis2g 20800 tgval2 20808 is1stc2 21293 elflim2 21815 i1fres 23517 dvdsflsumcom 24959 vmasum 24986 logfac2 24987 axcontlem2 25890 fusgr2wsp2nb 27314 2reuswap2 29455 reuxfr3d 29456 1stpreima 29612 bnj849 31121 elima4 31803 elfuns 32147 brimg 32169 dfrecs2 32182 dfrdg4 32183 bj-axsep 32918 bj-restuni 33175 mptsnunlem 33315 relowlpssretop 33342 poimirlem27 33566 sstotbnd3 33705 an12i 34030 selconj 34032 eldmqsres 34192 inxpxrn 34293 rnxrnres 34297 islshpat 34622 islpln5 35139 islvol5 35183 cdleme0nex 35895 dicelval3 36786 mapdordlem1a 37240 2rmoswap 41505 elpglem3 42784 |
Copyright terms: Public domain | W3C validator |