Mathbox for Kunhao Zheng < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  amgmw2d Structured version   Visualization version   GIF version

Theorem amgmw2d 43061
 Description: Weighted arithmetic-geometric mean inequality for 𝑛 = 2 (compare amgm2d 39001). (Contributed by Kunhao Zheng, 20-Jun-2021.)
Hypotheses
Ref Expression
amgmw2d.0 (𝜑𝐴 ∈ ℝ+)
amgmw2d.1 (𝜑𝑃 ∈ ℝ+)
amgmw2d.2 (𝜑𝐵 ∈ ℝ+)
amgmw2d.3 (𝜑𝑄 ∈ ℝ+)
amgmw2d.4 (𝜑 → (𝑃 + 𝑄) = 1)
Assertion
Ref Expression
amgmw2d (𝜑 → ((𝐴𝑐𝑃) · (𝐵𝑐𝑄)) ≤ ((𝐴 · 𝑃) + (𝐵 · 𝑄)))

Proof of Theorem amgmw2d
StepHypRef Expression
1 eqid 2758 . . 3 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
2 fzofi 12965 . . . 4 (0..^2) ∈ Fin
32a1i 11 . . 3 (𝜑 → (0..^2) ∈ Fin)
4 2nn 11375 . . . . 5 2 ∈ ℕ
5 lbfzo0 12700 . . . . 5 (0 ∈ (0..^2) ↔ 2 ∈ ℕ)
64, 5mpbir 221 . . . 4 0 ∈ (0..^2)
7 ne0i 4062 . . . 4 (0 ∈ (0..^2) → (0..^2) ≠ ∅)
86, 7mp1i 13 . . 3 (𝜑 → (0..^2) ≠ ∅)
9 amgmw2d.0 . . . . . 6 (𝜑𝐴 ∈ ℝ+)
10 amgmw2d.2 . . . . . 6 (𝜑𝐵 ∈ ℝ+)
119, 10s2cld 13814 . . . . 5 (𝜑 → ⟨“𝐴𝐵”⟩ ∈ Word ℝ+)
12 wrdf 13494 . . . . 5 (⟨“𝐴𝐵”⟩ ∈ Word ℝ+ → ⟨“𝐴𝐵”⟩:(0..^(♯‘⟨“𝐴𝐵”⟩))⟶ℝ+)
1311, 12syl 17 . . . 4 (𝜑 → ⟨“𝐴𝐵”⟩:(0..^(♯‘⟨“𝐴𝐵”⟩))⟶ℝ+)
14 s2len 13832 . . . . . 6 (♯‘⟨“𝐴𝐵”⟩) = 2
1514oveq2i 6822 . . . . 5 (0..^(♯‘⟨“𝐴𝐵”⟩)) = (0..^2)
1615feq2i 6196 . . . 4 (⟨“𝐴𝐵”⟩:(0..^(♯‘⟨“𝐴𝐵”⟩))⟶ℝ+ ↔ ⟨“𝐴𝐵”⟩:(0..^2)⟶ℝ+)
1713, 16sylib 208 . . 3 (𝜑 → ⟨“𝐴𝐵”⟩:(0..^2)⟶ℝ+)
18 amgmw2d.1 . . . . . 6 (𝜑𝑃 ∈ ℝ+)
19 amgmw2d.3 . . . . . 6 (𝜑𝑄 ∈ ℝ+)
2018, 19s2cld 13814 . . . . 5 (𝜑 → ⟨“𝑃𝑄”⟩ ∈ Word ℝ+)
21 wrdf 13494 . . . . 5 (⟨“𝑃𝑄”⟩ ∈ Word ℝ+ → ⟨“𝑃𝑄”⟩:(0..^(♯‘⟨“𝑃𝑄”⟩))⟶ℝ+)
2220, 21syl 17 . . . 4 (𝜑 → ⟨“𝑃𝑄”⟩:(0..^(♯‘⟨“𝑃𝑄”⟩))⟶ℝ+)
23 s2len 13832 . . . . . 6 (♯‘⟨“𝑃𝑄”⟩) = 2
2423oveq2i 6822 . . . . 5 (0..^(♯‘⟨“𝑃𝑄”⟩)) = (0..^2)
2524feq2i 6196 . . . 4 (⟨“𝑃𝑄”⟩:(0..^(♯‘⟨“𝑃𝑄”⟩))⟶ℝ+ ↔ ⟨“𝑃𝑄”⟩:(0..^2)⟶ℝ+)
2622, 25sylib 208 . . 3 (𝜑 → ⟨“𝑃𝑄”⟩:(0..^2)⟶ℝ+)
27 cnring 19968 . . . . . 6 fld ∈ Ring
28 ringmnd 18754 . . . . . 6 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
2927, 28mp1i 13 . . . . 5 (𝜑 → ℂfld ∈ Mnd)
3018rpcnd 12065 . . . . 5 (𝜑𝑃 ∈ ℂ)
3119rpcnd 12065 . . . . 5 (𝜑𝑄 ∈ ℂ)
32 cnfldbas 19950 . . . . . 6 ℂ = (Base‘ℂfld)
33 cnfldadd 19951 . . . . . 6 + = (+g‘ℂfld)
3432, 33gsumws2 17578 . . . . 5 ((ℂfld ∈ Mnd ∧ 𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ) → (ℂfld Σg ⟨“𝑃𝑄”⟩) = (𝑃 + 𝑄))
3529, 30, 31, 34syl3anc 1477 . . . 4 (𝜑 → (ℂfld Σg ⟨“𝑃𝑄”⟩) = (𝑃 + 𝑄))
36 amgmw2d.4 . . . 4 (𝜑 → (𝑃 + 𝑄) = 1)
3735, 36eqtrd 2792 . . 3 (𝜑 → (ℂfld Σg ⟨“𝑃𝑄”⟩) = 1)
381, 3, 8, 17, 26, 37amgmwlem 43059 . 2 (𝜑 → ((mulGrp‘ℂfld) Σg (⟨“𝐴𝐵”⟩ ∘𝑓𝑐⟨“𝑃𝑄”⟩)) ≤ (ℂfld Σg (⟨“𝐴𝐵”⟩ ∘𝑓 · ⟨“𝑃𝑄”⟩)))
399, 10jca 555 . . . . 5 (𝜑 → (𝐴 ∈ ℝ+𝐵 ∈ ℝ+))
4018, 19jca 555 . . . . 5 (𝜑 → (𝑃 ∈ ℝ+𝑄 ∈ ℝ+))
41 ofs2 13909 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑃 ∈ ℝ+𝑄 ∈ ℝ+)) → (⟨“𝐴𝐵”⟩ ∘𝑓𝑐⟨“𝑃𝑄”⟩) = ⟨“(𝐴𝑐𝑃)(𝐵𝑐𝑄)”⟩)
4239, 40, 41syl2anc 696 . . . 4 (𝜑 → (⟨“𝐴𝐵”⟩ ∘𝑓𝑐⟨“𝑃𝑄”⟩) = ⟨“(𝐴𝑐𝑃)(𝐵𝑐𝑄)”⟩)
4342oveq2d 6827 . . 3 (𝜑 → ((mulGrp‘ℂfld) Σg (⟨“𝐴𝐵”⟩ ∘𝑓𝑐⟨“𝑃𝑄”⟩)) = ((mulGrp‘ℂfld) Σg ⟨“(𝐴𝑐𝑃)(𝐵𝑐𝑄)”⟩))
441ringmgp 18751 . . . . 5 (ℂfld ∈ Ring → (mulGrp‘ℂfld) ∈ Mnd)
4527, 44mp1i 13 . . . 4 (𝜑 → (mulGrp‘ℂfld) ∈ Mnd)
4618rpred 12063 . . . . . 6 (𝜑𝑃 ∈ ℝ)
479, 46rpcxpcld 24673 . . . . 5 (𝜑 → (𝐴𝑐𝑃) ∈ ℝ+)
4847rpcnd 12065 . . . 4 (𝜑 → (𝐴𝑐𝑃) ∈ ℂ)
4919rpred 12063 . . . . . 6 (𝜑𝑄 ∈ ℝ)
5010, 49rpcxpcld 24673 . . . . 5 (𝜑 → (𝐵𝑐𝑄) ∈ ℝ+)
5150rpcnd 12065 . . . 4 (𝜑 → (𝐵𝑐𝑄) ∈ ℂ)
521, 32mgpbas 18693 . . . . 5 ℂ = (Base‘(mulGrp‘ℂfld))
53 cnfldmul 19952 . . . . . 6 · = (.r‘ℂfld)
541, 53mgpplusg 18691 . . . . 5 · = (+g‘(mulGrp‘ℂfld))
5552, 54gsumws2 17578 . . . 4 (((mulGrp‘ℂfld) ∈ Mnd ∧ (𝐴𝑐𝑃) ∈ ℂ ∧ (𝐵𝑐𝑄) ∈ ℂ) → ((mulGrp‘ℂfld) Σg ⟨“(𝐴𝑐𝑃)(𝐵𝑐𝑄)”⟩) = ((𝐴𝑐𝑃) · (𝐵𝑐𝑄)))
5645, 48, 51, 55syl3anc 1477 . . 3 (𝜑 → ((mulGrp‘ℂfld) Σg ⟨“(𝐴𝑐𝑃)(𝐵𝑐𝑄)”⟩) = ((𝐴𝑐𝑃) · (𝐵𝑐𝑄)))
5743, 56eqtrd 2792 . 2 (𝜑 → ((mulGrp‘ℂfld) Σg (⟨“𝐴𝐵”⟩ ∘𝑓𝑐⟨“𝑃𝑄”⟩)) = ((𝐴𝑐𝑃) · (𝐵𝑐𝑄)))
58 ofs2 13909 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℝ+) ∧ (𝑃 ∈ ℝ+𝑄 ∈ ℝ+)) → (⟨“𝐴𝐵”⟩ ∘𝑓 · ⟨“𝑃𝑄”⟩) = ⟨“(𝐴 · 𝑃)(𝐵 · 𝑄)”⟩)
5939, 40, 58syl2anc 696 . . . 4 (𝜑 → (⟨“𝐴𝐵”⟩ ∘𝑓 · ⟨“𝑃𝑄”⟩) = ⟨“(𝐴 · 𝑃)(𝐵 · 𝑄)”⟩)
6059oveq2d 6827 . . 3 (𝜑 → (ℂfld Σg (⟨“𝐴𝐵”⟩ ∘𝑓 · ⟨“𝑃𝑄”⟩)) = (ℂfld Σg ⟨“(𝐴 · 𝑃)(𝐵 · 𝑄)”⟩))
619, 18rpmulcld 12079 . . . . 5 (𝜑 → (𝐴 · 𝑃) ∈ ℝ+)
6261rpcnd 12065 . . . 4 (𝜑 → (𝐴 · 𝑃) ∈ ℂ)
6310, 19rpmulcld 12079 . . . . 5 (𝜑 → (𝐵 · 𝑄) ∈ ℝ+)
6463rpcnd 12065 . . . 4 (𝜑 → (𝐵 · 𝑄) ∈ ℂ)
6532, 33gsumws2 17578 . . . 4 ((ℂfld ∈ Mnd ∧ (𝐴 · 𝑃) ∈ ℂ ∧ (𝐵 · 𝑄) ∈ ℂ) → (ℂfld Σg ⟨“(𝐴 · 𝑃)(𝐵 · 𝑄)”⟩) = ((𝐴 · 𝑃) + (𝐵 · 𝑄)))
6629, 62, 64, 65syl3anc 1477 . . 3 (𝜑 → (ℂfld Σg ⟨“(𝐴 · 𝑃)(𝐵 · 𝑄)”⟩) = ((𝐴 · 𝑃) + (𝐵 · 𝑄)))
6760, 66eqtrd 2792 . 2 (𝜑 → (ℂfld Σg (⟨“𝐴𝐵”⟩ ∘𝑓 · ⟨“𝑃𝑄”⟩)) = ((𝐴 · 𝑃) + (𝐵 · 𝑄)))
6838, 57, 673brtr3d 4833 1 (𝜑 → ((𝐴𝑐𝑃) · (𝐵𝑐𝑄)) ≤ ((𝐴 · 𝑃) + (𝐵 · 𝑄)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1630   ∈ wcel 2137   ≠ wne 2930  ∅c0 4056   class class class wbr 4802  ⟶wf 6043  ‘cfv 6047  (class class class)co 6811   ∘𝑓 cof 7058  Fincfn 8119  ℂcc 10124  0cc0 10126  1c1 10127   + caddc 10129   · cmul 10131   ≤ cle 10265  ℕcn 11210  2c2 11260  ℝ+crp 12023  ..^cfzo 12657  ♯chash 13309  Word cword 13475  ⟨“cs2 13784   Σg cgsu 16301  Mndcmnd 17493  mulGrpcmgp 18687  Ringcrg 18745  ℂfldccnfld 19946  ↑𝑐ccxp 24499 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112  ax-inf2 8709  ax-cnex 10182  ax-resscn 10183  ax-1cn 10184  ax-icn 10185  ax-addcl 10186  ax-addrcl 10187  ax-mulcl 10188  ax-mulrcl 10189  ax-mulcom 10190  ax-addass 10191  ax-mulass 10192  ax-distr 10193  ax-i2m1 10194  ax-1ne0 10195  ax-1rid 10196  ax-rnegex 10197  ax-rrecex 10198  ax-cnre 10199  ax-pre-lttri 10200  ax-pre-lttrn 10201  ax-pre-ltadd 10202  ax-pre-mulgt0 10203  ax-pre-sup 10204  ax-addf 10205  ax-mulf 10206 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-nel 3034  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-iin 4673  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-se 5224  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-isom 6056  df-riota 6772  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-of 7060  df-om 7229  df-1st 7331  df-2nd 7332  df-supp 7462  df-tpos 7519  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-2o 7728  df-oadd 7731  df-er 7909  df-map 8023  df-pm 8024  df-ixp 8073  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-fsupp 8439  df-fi 8480  df-sup 8511  df-inf 8512  df-oi 8578  df-card 8953  df-cda 9180  df-pnf 10266  df-mnf 10267  df-xr 10268  df-ltxr 10269  df-le 10270  df-sub 10458  df-neg 10459  df-div 10875  df-nn 11211  df-2 11269  df-3 11270  df-4 11271  df-5 11272  df-6 11273  df-7 11274  df-8 11275  df-9 11276  df-n0 11483  df-z 11568  df-dec 11684  df-uz 11878  df-q 11980  df-rp 12024  df-xneg 12137  df-xadd 12138  df-xmul 12139  df-ioo 12370  df-ioc 12371  df-ico 12372  df-icc 12373  df-fz 12518  df-fzo 12658  df-fl 12785  df-mod 12861  df-seq 12994  df-exp 13053  df-fac 13253  df-bc 13282  df-hash 13310  df-word 13483  df-concat 13485  df-s1 13486  df-s2 13791  df-shft 14004  df-cj 14036  df-re 14037  df-im 14038  df-sqrt 14172  df-abs 14173  df-limsup 14399  df-clim 14416  df-rlim 14417  df-sum 14614  df-ef 14995  df-sin 14997  df-cos 14998  df-pi 15000  df-struct 16059  df-ndx 16060  df-slot 16061  df-base 16063  df-sets 16064  df-ress 16065  df-plusg 16154  df-mulr 16155  df-starv 16156  df-sca 16157  df-vsca 16158  df-ip 16159  df-tset 16160  df-ple 16161  df-ds 16164  df-unif 16165  df-hom 16166  df-cco 16167  df-rest 16283  df-topn 16284  df-0g 16302  df-gsum 16303  df-topgen 16304  df-pt 16305  df-prds 16308  df-xrs 16362  df-qtop 16367  df-imas 16368  df-xps 16370  df-mre 16446  df-mrc 16447  df-acs 16449  df-mgm 17441  df-sgrp 17483  df-mnd 17494  df-mhm 17534  df-submnd 17535  df-grp 17624  df-minusg 17625  df-mulg 17740  df-subg 17790  df-ghm 17857  df-gim 17900  df-cntz 17948  df-cmn 18393  df-abl 18394  df-mgp 18688  df-ur 18700  df-ring 18747  df-cring 18748  df-oppr 18821  df-dvdsr 18839  df-unit 18840  df-invr 18870  df-dvr 18881  df-drng 18949  df-subrg 18978  df-psmet 19938  df-xmet 19939  df-met 19940  df-bl 19941  df-mopn 19942  df-fbas 19943  df-fg 19944  df-cnfld 19947  df-refld 20151  df-top 20899  df-topon 20916  df-topsp 20937  df-bases 20950  df-cld 21023  df-ntr 21024  df-cls 21025  df-nei 21102  df-lp 21140  df-perf 21141  df-cn 21231  df-cnp 21232  df-haus 21319  df-cmp 21390  df-tx 21565  df-hmeo 21758  df-fil 21849  df-fm 21941  df-flim 21942  df-flf 21943  df-xms 22324  df-ms 22325  df-tms 22326  df-cncf 22880  df-limc 23827  df-dv 23828  df-log 24500  df-cxp 24501 This theorem is referenced by:  young2d  43062
 Copyright terms: Public domain W3C validator