MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  amgm Structured version   Visualization version   GIF version

Theorem amgm 24762
Description: Inequality of arithmetic and geometric means. Here (𝑀 Σg 𝐹) calculates the group sum within the multiplicative monoid of the complex numbers (or in other words, it multiplies the elements 𝐹(𝑥), 𝑥𝐴 together), and (ℂfld Σg 𝐹) calculates the group sum in the additive group (i.e. the sum of the elements). This is Metamath 100 proof #38. (Contributed by Mario Carneiro, 20-Jun-2015.)
Hypothesis
Ref Expression
amgm.1 𝑀 = (mulGrp‘ℂfld)
Assertion
Ref Expression
amgm ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (#‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (#‘𝐴)))

Proof of Theorem amgm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 amgm.1 . . . . . . . . 9 𝑀 = (mulGrp‘ℂfld)
2 cnfldbas 19798 . . . . . . . . 9 ℂ = (Base‘ℂfld)
31, 2mgpbas 18541 . . . . . . . 8 ℂ = (Base‘𝑀)
4 cnfld1 19819 . . . . . . . . 9 1 = (1r‘ℂfld)
51, 4ringidval 18549 . . . . . . . 8 1 = (0g𝑀)
6 cnfldmul 19800 . . . . . . . . 9 · = (.r‘ℂfld)
71, 6mgpplusg 18539 . . . . . . . 8 · = (+g𝑀)
8 cncrng 19815 . . . . . . . . 9 fld ∈ CRing
91crngmgp 18601 . . . . . . . . 9 (ℂfld ∈ CRing → 𝑀 ∈ CMnd)
108, 9mp1i 13 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝑀 ∈ CMnd)
11 simpl1 1084 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐴 ∈ Fin)
12 simpl3 1086 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹:𝐴⟶(0[,)+∞))
13 rge0ssre 12318 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
14 ax-resscn 10031 . . . . . . . . . 10 ℝ ⊆ ℂ
1513, 14sstri 3645 . . . . . . . . 9 (0[,)+∞) ⊆ ℂ
16 fss 6094 . . . . . . . . 9 ((𝐹:𝐴⟶(0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
1712, 15, 16sylancl 695 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹:𝐴⟶ℂ)
18 1ex 10073 . . . . . . . . . 10 1 ∈ V
1918a1i 11 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 1 ∈ V)
2017, 11, 19fdmfifsupp 8326 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹 finSupp 1)
21 disjdif 4073 . . . . . . . . 9 ({𝑥} ∩ (𝐴 ∖ {𝑥})) = ∅
2221a1i 11 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ({𝑥} ∩ (𝐴 ∖ {𝑥})) = ∅)
23 undif2 4077 . . . . . . . . 9 ({𝑥} ∪ (𝐴 ∖ {𝑥})) = ({𝑥} ∪ 𝐴)
24 simprl 809 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝑥𝐴)
2524snssd 4372 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → {𝑥} ⊆ 𝐴)
26 ssequn1 3816 . . . . . . . . . 10 ({𝑥} ⊆ 𝐴 ↔ ({𝑥} ∪ 𝐴) = 𝐴)
2725, 26sylib 208 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ({𝑥} ∪ 𝐴) = 𝐴)
2823, 27syl5req 2698 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐴 = ({𝑥} ∪ (𝐴 ∖ {𝑥})))
293, 5, 7, 10, 11, 17, 20, 22, 28gsumsplit 18374 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg 𝐹) = ((𝑀 Σg (𝐹 ↾ {𝑥})) · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))))
3012, 25feqresmpt 6289 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹 ↾ {𝑥}) = (𝑦 ∈ {𝑥} ↦ (𝐹𝑦)))
3130oveq2d 6706 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝐹 ↾ {𝑥})) = (𝑀 Σg (𝑦 ∈ {𝑥} ↦ (𝐹𝑦))))
32 cnring 19816 . . . . . . . . . . 11 fld ∈ Ring
331ringmgp 18599 . . . . . . . . . . 11 (ℂfld ∈ Ring → 𝑀 ∈ Mnd)
3432, 33mp1i 13 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝑀 ∈ Mnd)
3517, 24ffvelrnd 6400 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹𝑥) ∈ ℂ)
36 fveq2 6229 . . . . . . . . . . 11 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
373, 36gsumsn 18400 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ 𝑥𝐴 ∧ (𝐹𝑥) ∈ ℂ) → (𝑀 Σg (𝑦 ∈ {𝑥} ↦ (𝐹𝑦))) = (𝐹𝑥))
3834, 24, 35, 37syl3anc 1366 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝑦 ∈ {𝑥} ↦ (𝐹𝑦))) = (𝐹𝑥))
39 simprr 811 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹𝑥) = 0)
4031, 38, 393eqtrd 2689 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝐹 ↾ {𝑥})) = 0)
4140oveq1d 6705 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg (𝐹 ↾ {𝑥})) · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))) = (0 · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))))
42 diffi 8233 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝐴 ∖ {𝑥}) ∈ Fin)
4311, 42syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐴 ∖ {𝑥}) ∈ Fin)
44 difss 3770 . . . . . . . . . 10 (𝐴 ∖ {𝑥}) ⊆ 𝐴
45 fssres 6108 . . . . . . . . . 10 ((𝐹:𝐴⟶ℂ ∧ (𝐴 ∖ {𝑥}) ⊆ 𝐴) → (𝐹 ↾ (𝐴 ∖ {𝑥})):(𝐴 ∖ {𝑥})⟶ℂ)
4617, 44, 45sylancl 695 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹 ↾ (𝐴 ∖ {𝑥})):(𝐴 ∖ {𝑥})⟶ℂ)
4746, 43, 19fdmfifsupp 8326 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝐹 ↾ (𝐴 ∖ {𝑥})) finSupp 1)
483, 5, 10, 43, 46, 47gsumcl 18362 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥}))) ∈ ℂ)
4948mul02d 10272 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (0 · (𝑀 Σg (𝐹 ↾ (𝐴 ∖ {𝑥})))) = 0)
5029, 41, 493eqtrd 2689 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (𝑀 Σg 𝐹) = 0)
5150oveq1d 6705 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (#‘𝐴))) = (0↑𝑐(1 / (#‘𝐴))))
52 simpl2 1085 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐴 ≠ ∅)
53 hashnncl 13195 . . . . . . . . . 10 (𝐴 ∈ Fin → ((#‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
5411, 53syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((#‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅))
5552, 54mpbird 247 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (#‘𝐴) ∈ ℕ)
5655nncnd 11074 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (#‘𝐴) ∈ ℂ)
5755nnne0d 11103 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (#‘𝐴) ≠ 0)
5856, 57reccld 10832 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (1 / (#‘𝐴)) ∈ ℂ)
5956, 57recne0d 10833 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (1 / (#‘𝐴)) ≠ 0)
6058, 590cxpd 24501 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (0↑𝑐(1 / (#‘𝐴))) = 0)
6151, 60eqtrd 2685 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (#‘𝐴))) = 0)
62 cnfld0 19818 . . . . . . 7 0 = (0g‘ℂfld)
63 ringcmn 18627 . . . . . . . 8 (ℂfld ∈ Ring → ℂfld ∈ CMnd)
6432, 63mp1i 13 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ℂfld ∈ CMnd)
65 rege0subm 19850 . . . . . . . 8 (0[,)+∞) ∈ (SubMnd‘ℂfld)
6665a1i 11 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (0[,)+∞) ∈ (SubMnd‘ℂfld))
67 c0ex 10072 . . . . . . . . 9 0 ∈ V
6867a1i 11 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 0 ∈ V)
6912, 11, 68fdmfifsupp 8326 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 𝐹 finSupp 0)
7062, 64, 11, 66, 12, 69gsumsubmcl 18365 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (ℂfld Σg 𝐹) ∈ (0[,)+∞))
71 elrege0 12316 . . . . . 6 ((ℂfld Σg 𝐹) ∈ (0[,)+∞) ↔ ((ℂfld Σg 𝐹) ∈ ℝ ∧ 0 ≤ (ℂfld Σg 𝐹)))
7270, 71sylib 208 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((ℂfld Σg 𝐹) ∈ ℝ ∧ 0 ≤ (ℂfld Σg 𝐹)))
7355nnred 11073 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → (#‘𝐴) ∈ ℝ)
7455nngt0d 11102 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 0 < (#‘𝐴))
75 divge0 10930 . . . . 5 ((((ℂfld Σg 𝐹) ∈ ℝ ∧ 0 ≤ (ℂfld Σg 𝐹)) ∧ ((#‘𝐴) ∈ ℝ ∧ 0 < (#‘𝐴))) → 0 ≤ ((ℂfld Σg 𝐹) / (#‘𝐴)))
7672, 73, 74, 75syl12anc 1364 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → 0 ≤ ((ℂfld Σg 𝐹) / (#‘𝐴)))
7761, 76eqbrtrd 4707 . . 3 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ (𝑥𝐴 ∧ (𝐹𝑥) = 0)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (#‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (#‘𝐴)))
7877rexlimdvaa 3061 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (∃𝑥𝐴 (𝐹𝑥) = 0 → ((𝑀 Σg 𝐹)↑𝑐(1 / (#‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (#‘𝐴))))
79 ralnex 3021 . . 3 (∀𝑥𝐴 ¬ (𝐹𝑥) = 0 ↔ ¬ ∃𝑥𝐴 (𝐹𝑥) = 0)
80 simpl1 1084 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐴 ∈ Fin)
81 simpl2 1085 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐴 ≠ ∅)
82 simpl3 1086 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐹:𝐴⟶(0[,)+∞))
83 ffn 6083 . . . . . . 7 (𝐹:𝐴⟶(0[,)+∞) → 𝐹 Fn 𝐴)
8482, 83syl 17 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐹 Fn 𝐴)
85 ffvelrn 6397 . . . . . . . . . . . . . . . 16 ((𝐹:𝐴⟶(0[,)+∞) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ (0[,)+∞))
86853ad2antl3 1245 . . . . . . . . . . . . . . 15 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ (0[,)+∞))
87 elrege0 12316 . . . . . . . . . . . . . . 15 ((𝐹𝑥) ∈ (0[,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
8886, 87sylib 208 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ ℝ ∧ 0 ≤ (𝐹𝑥)))
8988simprd 478 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → 0 ≤ (𝐹𝑥))
90 0re 10078 . . . . . . . . . . . . . 14 0 ∈ ℝ
9188simpld 474 . . . . . . . . . . . . . 14 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
92 leloe 10162 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (𝐹𝑥) ∈ ℝ) → (0 ≤ (𝐹𝑥) ↔ (0 < (𝐹𝑥) ∨ 0 = (𝐹𝑥))))
9390, 91, 92sylancr 696 . . . . . . . . . . . . 13 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (0 ≤ (𝐹𝑥) ↔ (0 < (𝐹𝑥) ∨ 0 = (𝐹𝑥))))
9489, 93mpbid 222 . . . . . . . . . . . 12 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (0 < (𝐹𝑥) ∨ 0 = (𝐹𝑥)))
9594ord 391 . . . . . . . . . . 11 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ 0 < (𝐹𝑥) → 0 = (𝐹𝑥)))
96 eqcom 2658 . . . . . . . . . . 11 (0 = (𝐹𝑥) ↔ (𝐹𝑥) = 0)
9795, 96syl6ib 241 . . . . . . . . . 10 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ 0 < (𝐹𝑥) → (𝐹𝑥) = 0))
9897con1d 139 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ (𝐹𝑥) = 0 → 0 < (𝐹𝑥)))
99 elrp 11872 . . . . . . . . . . 11 ((𝐹𝑥) ∈ ℝ+ ↔ ((𝐹𝑥) ∈ ℝ ∧ 0 < (𝐹𝑥)))
10099baib 964 . . . . . . . . . 10 ((𝐹𝑥) ∈ ℝ → ((𝐹𝑥) ∈ ℝ+ ↔ 0 < (𝐹𝑥)))
10191, 100syl 17 . . . . . . . . 9 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → ((𝐹𝑥) ∈ ℝ+ ↔ 0 < (𝐹𝑥)))
10298, 101sylibrd 249 . . . . . . . 8 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ 𝑥𝐴) → (¬ (𝐹𝑥) = 0 → (𝐹𝑥) ∈ ℝ+))
103102ralimdva 2991 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (∀𝑥𝐴 ¬ (𝐹𝑥) = 0 → ∀𝑥𝐴 (𝐹𝑥) ∈ ℝ+))
104103imp 444 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → ∀𝑥𝐴 (𝐹𝑥) ∈ ℝ+)
105 ffnfv 6428 . . . . . 6 (𝐹:𝐴⟶ℝ+ ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ ℝ+))
10684, 104, 105sylanbrc 699 . . . . 5 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → 𝐹:𝐴⟶ℝ+)
1071, 80, 81, 106amgmlem 24761 . . . 4 (((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) ∧ ∀𝑥𝐴 ¬ (𝐹𝑥) = 0) → ((𝑀 Σg 𝐹)↑𝑐(1 / (#‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (#‘𝐴)))
108107ex 449 . . 3 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (∀𝑥𝐴 ¬ (𝐹𝑥) = 0 → ((𝑀 Σg 𝐹)↑𝑐(1 / (#‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (#‘𝐴))))
10979, 108syl5bir 233 . 2 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → (¬ ∃𝑥𝐴 (𝐹𝑥) = 0 → ((𝑀 Σg 𝐹)↑𝑐(1 / (#‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (#‘𝐴))))
11078, 109pm2.61d 170 1 ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅ ∧ 𝐹:𝐴⟶(0[,)+∞)) → ((𝑀 Σg 𝐹)↑𝑐(1 / (#‘𝐴))) ≤ ((ℂfld Σg 𝐹) / (#‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  Vcvv 3231  cdif 3604  cun 3605  cin 3606  wss 3607  c0 3948  {csn 4210   class class class wbr 4685  cmpt 4762  cres 5145   Fn wfn 5921  wf 5922  cfv 5926  (class class class)co 6690  Fincfn 7997  cc 9972  cr 9973  0cc0 9974  1c1 9975   · cmul 9979  +∞cpnf 10109   < clt 10112  cle 10113   / cdiv 10722  cn 11058  +crp 11870  [,)cico 12215  #chash 13157   Σg cgsu 16148  Mndcmnd 17341  SubMndcsubmnd 17381  CMndccmn 18239  mulGrpcmgp 18535  Ringcrg 18593  CRingccrg 18594  fldccnfld 19794  𝑐ccxp 24347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-mulg 17588  df-subg 17638  df-ghm 17705  df-gim 17748  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-drng 18797  df-subrg 18826  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-refld 19999  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-cmp 21238  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348  df-cxp 24349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator