MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alxfr Structured version   Visualization version   GIF version

Theorem alxfr 4869
Description: Transfer universal quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 18-Feb-2007.)
Hypothesis
Ref Expression
alxfr.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
alxfr ((∀𝑦 𝐴𝐵 ∧ ∀𝑥𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑦   𝜓,𝑥   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem alxfr
StepHypRef Expression
1 alxfr.1 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
21spcgv 3288 . . . . . 6 (𝐴𝐵 → (∀𝑥𝜑𝜓))
32com12 32 . . . . 5 (∀𝑥𝜑 → (𝐴𝐵𝜓))
43alimdv 1843 . . . 4 (∀𝑥𝜑 → (∀𝑦 𝐴𝐵 → ∀𝑦𝜓))
54com12 32 . . 3 (∀𝑦 𝐴𝐵 → (∀𝑥𝜑 → ∀𝑦𝜓))
65adantr 481 . 2 ((∀𝑦 𝐴𝐵 ∧ ∀𝑥𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 → ∀𝑦𝜓))
7 nfa1 2026 . . . . . 6 𝑦𝑦𝜓
8 nfv 1841 . . . . . 6 𝑦𝜑
9 sp 2051 . . . . . . 7 (∀𝑦𝜓𝜓)
109, 1syl5ibrcom 237 . . . . . 6 (∀𝑦𝜓 → (𝑥 = 𝐴𝜑))
117, 8, 10exlimd 2085 . . . . 5 (∀𝑦𝜓 → (∃𝑦 𝑥 = 𝐴𝜑))
1211alimdv 1843 . . . 4 (∀𝑦𝜓 → (∀𝑥𝑦 𝑥 = 𝐴 → ∀𝑥𝜑))
1312com12 32 . . 3 (∀𝑥𝑦 𝑥 = 𝐴 → (∀𝑦𝜓 → ∀𝑥𝜑))
1413adantl 482 . 2 ((∀𝑦 𝐴𝐵 ∧ ∀𝑥𝑦 𝑥 = 𝐴) → (∀𝑦𝜓 → ∀𝑥𝜑))
156, 14impbid 202 1 ((∀𝑦 𝐴𝐵 ∧ ∀𝑥𝑦 𝑥 = 𝐴) → (∀𝑥𝜑 ↔ ∀𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1479   = wceq 1481  wex 1702  wcel 1988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-v 3197
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator