 Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  altopth2 Structured version   Visualization version   GIF version

Theorem altopth2 32404
 Description: Equality of the second members of equal alternate ordered pairs, which holds regardless of the first members' sethood. (Contributed by Scott Fenton, 22-Mar-2012.)
Assertion
Ref Expression
altopth2 (𝐵𝑉 → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ → 𝐵 = 𝐷))

Proof of Theorem altopth2
StepHypRef Expression
1 altopthsn 32399 . 2 (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ ({𝐴} = {𝐶} ∧ {𝐵} = {𝐷}))
2 sneqrg 4501 . . 3 (𝐵𝑉 → ({𝐵} = {𝐷} → 𝐵 = 𝐷))
32adantld 474 . 2 (𝐵𝑉 → (({𝐴} = {𝐶} ∧ {𝐵} = {𝐷}) → 𝐵 = 𝐷))
41, 3syl5bi 232 1 (𝐵𝑉 → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ → 𝐵 = 𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1630   ∈ wcel 2144  {csn 4314  ⟪caltop 32394 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-v 3351  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-sn 4315  df-pr 4317  df-altop 32396 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator