MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alrot4 Structured version   Visualization version   GIF version

Theorem alrot4 2195
Description: Rotate four universal quantifiers twice. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Fan Zheng, 6-Jun-2016.)
Assertion
Ref Expression
alrot4 (∀𝑥𝑦𝑧𝑤𝜑 ↔ ∀𝑧𝑤𝑥𝑦𝜑)

Proof of Theorem alrot4
StepHypRef Expression
1 alrot3 2194 . . 3 (∀𝑦𝑧𝑤𝜑 ↔ ∀𝑧𝑤𝑦𝜑)
21albii 1895 . 2 (∀𝑥𝑦𝑧𝑤𝜑 ↔ ∀𝑥𝑧𝑤𝑦𝜑)
3 alrot3 2194 . 2 (∀𝑥𝑧𝑤𝑦𝜑 ↔ ∀𝑧𝑤𝑥𝑦𝜑)
42, 3bitri 264 1 (∀𝑥𝑦𝑧𝑤𝜑 ↔ ∀𝑧𝑤𝑥𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wal 1629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-11 2190
This theorem depends on definitions:  df-bi 197
This theorem is referenced by:  2mo  2700  fun11  6103
  Copyright terms: Public domain W3C validator