Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  allbutfiinf Structured version   Visualization version   GIF version

Theorem allbutfiinf 39960
 Description: Given a "for all but finitely many" condition, the condition holds from 𝑁 on. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
allbutfiinf.z 𝑍 = (ℤ𝑀)
allbutfiinf.a 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
allbutfiinf.x (𝜑𝑋𝐴)
allbutfiinf.n 𝑁 = inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
Assertion
Ref Expression
allbutfiinf (𝜑 → (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
Distinct variable groups:   𝐵,𝑛   𝑚,𝑋,𝑛   𝑚,𝑍,𝑛
Allowed substitution hints:   𝜑(𝑚,𝑛)   𝐴(𝑚,𝑛)   𝐵(𝑚)   𝑀(𝑚,𝑛)   𝑁(𝑚,𝑛)

Proof of Theorem allbutfiinf
StepHypRef Expression
1 ssrab2 3720 . . 3 {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ 𝑍
2 allbutfiinf.n . . . . 5 𝑁 = inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
32a1i 11 . . . 4 (𝜑𝑁 = inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < ))
4 allbutfiinf.z . . . . . . 7 𝑍 = (ℤ𝑀)
51, 4sseqtri 3670 . . . . . 6 {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ (ℤ𝑀)
65a1i 11 . . . . 5 (𝜑 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ (ℤ𝑀))
7 allbutfiinf.x . . . . . . 7 (𝜑𝑋𝐴)
8 allbutfiinf.a . . . . . . . 8 𝐴 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)𝐵
94, 8allbutfi 39929 . . . . . . 7 (𝑋𝐴 ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
107, 9sylib 208 . . . . . 6 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵)
11 nfrab1 3152 . . . . . . . . 9 𝑛{𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}
12 nfcv 2793 . . . . . . . . 9 𝑛
1311, 12nfne 2923 . . . . . . . 8 𝑛{𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅
14 rabid 3145 . . . . . . . . . . . 12 (𝑛 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ↔ (𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵))
1514bicomi 214 . . . . . . . . . . 11 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) ↔ 𝑛 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
1615biimpi 206 . . . . . . . . . 10 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → 𝑛 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
17 ne0i 3954 . . . . . . . . . 10 (𝑛 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅)
1816, 17syl 17 . . . . . . . . 9 ((𝑛𝑍 ∧ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵) → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅)
1918ex 449 . . . . . . . 8 (𝑛𝑍 → (∀𝑚 ∈ (ℤ𝑛)𝑋𝐵 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅))
2013, 19rexlimi 3053 . . . . . . 7 (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅)
2120a1i 11 . . . . . 6 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋𝐵 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅))
2210, 21mpd 15 . . . . 5 (𝜑 → {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅)
23 infssuzcl 11810 . . . . 5 (({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ⊆ (ℤ𝑀) ∧ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ≠ ∅) → inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < ) ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
246, 22, 23syl2anc 694 . . . 4 (𝜑 → inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < ) ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
253, 24eqeltrd 2730 . . 3 (𝜑𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵})
261, 25sseldi 3634 . 2 (𝜑𝑁𝑍)
27 nfcv 2793 . . . . . . . 8 𝑛
28 nfcv 2793 . . . . . . . 8 𝑛 <
2911, 27, 28nfinf 8429 . . . . . . 7 𝑛inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
302, 29nfcxfr 2791 . . . . . 6 𝑛𝑁
31 nfcv 2793 . . . . . 6 𝑛𝑍
32 nfcv 2793 . . . . . . . 8 𝑛
3332, 30nffv 6236 . . . . . . 7 𝑛(ℤ𝑁)
34 nfv 1883 . . . . . . 7 𝑛 𝑋𝐵
3533, 34nfral 2974 . . . . . 6 𝑛𝑚 ∈ (ℤ𝑁)𝑋𝐵
36 nfcv 2793 . . . . . . 7 𝑚(ℤ𝑛)
37 nfcv 2793 . . . . . . . 8 𝑚
38 nfra1 2970 . . . . . . . . . . 11 𝑚𝑚 ∈ (ℤ𝑛)𝑋𝐵
39 nfcv 2793 . . . . . . . . . . 11 𝑚𝑍
4038, 39nfrab 3153 . . . . . . . . . 10 𝑚{𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}
41 nfcv 2793 . . . . . . . . . 10 𝑚
42 nfcv 2793 . . . . . . . . . 10 𝑚 <
4340, 41, 42nfinf 8429 . . . . . . . . 9 𝑚inf({𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵}, ℝ, < )
442, 43nfcxfr 2791 . . . . . . . 8 𝑚𝑁
4537, 44nffv 6236 . . . . . . 7 𝑚(ℤ𝑁)
46 fveq2 6229 . . . . . . 7 (𝑛 = 𝑁 → (ℤ𝑛) = (ℤ𝑁))
4736, 45, 46raleqd 39639 . . . . . 6 (𝑛 = 𝑁 → (∀𝑚 ∈ (ℤ𝑛)𝑋𝐵 ↔ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
4830, 31, 35, 47elrabf 3392 . . . . 5 (𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} ↔ (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
4948biimpi 206 . . . 4 (𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} → (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
5049simprd 478 . . 3 (𝑁 ∈ {𝑛𝑍 ∣ ∀𝑚 ∈ (ℤ𝑛)𝑋𝐵} → ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵)
5125, 50syl 17 . 2 (𝜑 → ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵)
5226, 51jca 553 1 (𝜑 → (𝑁𝑍 ∧ ∀𝑚 ∈ (ℤ𝑁)𝑋𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030   ≠ wne 2823  ∀wral 2941  ∃wrex 2942  {crab 2945   ⊆ wss 3607  ∅c0 3948  ∪ ciun 4552  ∩ ciin 4553  ‘cfv 5926  infcinf 8388  ℝcr 9973   < clt 10112  ℤ≥cuz 11725 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator