Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  allbutfifvre Structured version   Visualization version   GIF version

Theorem allbutfifvre 40419
 Description: Given a sequence of real-valued functions, and 𝑋 that belongs to all but finitely many domains, then its function value is ultimately a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
allbutfifvre.1 𝑚𝜑
allbutfifvre.2 𝑍 = (ℤ𝑀)
allbutfifvre.3 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
allbutfifvre.4 𝐷 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
allbutfifvre.5 (𝜑𝑋𝐷)
Assertion
Ref Expression
allbutfifvre (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ)
Distinct variable groups:   𝑚,𝑋,𝑛   𝑚,𝑍   𝜑,𝑛
Allowed substitution hints:   𝜑(𝑚)   𝐷(𝑚,𝑛)   𝐹(𝑚,𝑛)   𝑀(𝑚,𝑛)   𝑍(𝑛)

Proof of Theorem allbutfifvre
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 allbutfifvre.5 . . . 4 (𝜑𝑋𝐷)
2 allbutfifvre.4 . . . 4 𝐷 = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
31, 2syl6eleq 2859 . . 3 (𝜑𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚))
4 allbutfifvre.2 . . . 4 𝑍 = (ℤ𝑀)
5 eqid 2770 . . . 4 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) = 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚)
64, 5allbutfi 40126 . . 3 (𝑋 𝑛𝑍 𝑚 ∈ (ℤ𝑛)dom (𝐹𝑚) ↔ ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋 ∈ dom (𝐹𝑚))
73, 6sylib 208 . 2 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋 ∈ dom (𝐹𝑚))
8 allbutfifvre.1 . . . . 5 𝑚𝜑
9 nfv 1994 . . . . 5 𝑚 𝑛𝑍
108, 9nfan 1979 . . . 4 𝑚(𝜑𝑛𝑍)
11 simpll 742 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝜑)
124uztrn2 11905 . . . . . . . 8 ((𝑛𝑍𝑗 ∈ (ℤ𝑛)) → 𝑗𝑍)
1312ssd 39767 . . . . . . 7 (𝑛𝑍 → (ℤ𝑛) ⊆ 𝑍)
1413sselda 3750 . . . . . 6 ((𝑛𝑍𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
1514adantll 685 . . . . 5 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → 𝑚𝑍)
16 allbutfifvre.3 . . . . . . 7 ((𝜑𝑚𝑍) → (𝐹𝑚):dom (𝐹𝑚)⟶ℝ)
1716ffvelrnda 6502 . . . . . 6 (((𝜑𝑚𝑍) ∧ 𝑋 ∈ dom (𝐹𝑚)) → ((𝐹𝑚)‘𝑋) ∈ ℝ)
1817ex 397 . . . . 5 ((𝜑𝑚𝑍) → (𝑋 ∈ dom (𝐹𝑚) → ((𝐹𝑚)‘𝑋) ∈ ℝ))
1911, 15, 18syl2anc 565 . . . 4 (((𝜑𝑛𝑍) ∧ 𝑚 ∈ (ℤ𝑛)) → (𝑋 ∈ dom (𝐹𝑚) → ((𝐹𝑚)‘𝑋) ∈ ℝ))
2010, 19ralimdaa 3106 . . 3 ((𝜑𝑛𝑍) → (∀𝑚 ∈ (ℤ𝑛)𝑋 ∈ dom (𝐹𝑚) → ∀𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ))
2120reximdva 3164 . 2 (𝜑 → (∃𝑛𝑍𝑚 ∈ (ℤ𝑛)𝑋 ∈ dom (𝐹𝑚) → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ))
227, 21mpd 15 1 (𝜑 → ∃𝑛𝑍𝑚 ∈ (ℤ𝑛)((𝐹𝑚)‘𝑋) ∈ ℝ)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1630  Ⅎwnf 1855   ∈ wcel 2144  ∀wral 3060  ∃wrex 3061  ∪ ciun 4652  ∩ ciin 4653  dom cdm 5249  ⟶wf 6027  ‘cfv 6031  ℝcr 10136  ℤ≥cuz 11887 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-pre-lttri 10211  ax-pre-lttrn 10212 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-neg 10470  df-z 11579  df-uz 11888 This theorem is referenced by:  fnlimabslt  40423
 Copyright terms: Public domain W3C validator