![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alimd | Structured version Visualization version GIF version |
Description: Deduction form of Theorem 19.20 of [Margaris] p. 90, see alim 1886. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
alimd.1 | ⊢ Ⅎ𝑥𝜑 |
alimd.2 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
alimd | ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alimd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2219 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | alimd.2 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
4 | 2, 3 | alimdh 1893 | 1 ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1629 Ⅎwnf 1856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-12 2203 |
This theorem depends on definitions: df-bi 197 df-ex 1853 df-nf 1858 |
This theorem is referenced by: alrimdd 2239 nfald 2327 mo3 2656 2mo 2700 axpowndlem3 9627 axext4dist 32042 bj-mo3OLD 33167 pm11.71 39123 |
Copyright terms: Public domain | W3C validator |