![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > alim | Structured version Visualization version GIF version |
Description: Restatement of Axiom ax-4 1882, for labeling consistency. It should be the only theorem using ax-4 1882. (Contributed by NM, 10-Jan-1993.) |
Ref | Expression |
---|---|
alim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-4 1882 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1626 |
This theorem was proved from axioms: ax-4 1882 |
This theorem is referenced by: alimi 1884 al2im 1887 sylgt 1894 19.38a 1912 stdpc5v 2012 spfwOLD 2113 19.21tOLDOLD 2217 axc4 2273 19.21t-1OLD 2353 eunex 5004 hbaltg 32014 bj-2alim 32896 bj-alexim 32907 bj-hbalt 32973 bj-nfdt0 32987 bj-eunex 33101 stdpc5t 33116 al3im 38436 hbalg 39269 al2imVD 39593 hbalgVD 39636 |
Copyright terms: Public domain | W3C validator |