MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alim Structured version   Visualization version   GIF version

Theorem alim 1883
Description: Restatement of Axiom ax-4 1882, for labeling consistency. It should be the only theorem using ax-4 1882. (Contributed by NM, 10-Jan-1993.)
Assertion
Ref Expression
alim (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem alim
StepHypRef Expression
1 ax-4 1882 1 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1626
This theorem was proved from axioms:  ax-4 1882
This theorem is referenced by:  alimi  1884  al2im  1887  sylgt  1894  19.38a  1912  stdpc5v  2012  spfwOLD  2113  19.21tOLDOLD  2217  axc4  2273  19.21t-1OLD  2353  eunex  5004  hbaltg  32014  bj-2alim  32896  bj-alexim  32907  bj-hbalt  32973  bj-nfdt0  32987  bj-eunex  33101  stdpc5t  33116  al3im  38436  hbalg  39269  al2imVD  39593  hbalgVD  39636
  Copyright terms: Public domain W3C validator